CO(2) entry into Synechococcus sp. PCC7942 cells was drastically inhibited by the water channel blocker p-chloromercuriphenylsulfonic acid suggesting that CO(2) uptake is, for the most part, passive via aquaporins with subsequent energy-dependent conversion to HCO3(-). Dependence of CO(2) uptake on photosynthetic electron transport via photosystem I (PSI) was confirmed by experiments with electron transport inhibitors, electron donors and acceptors, and a mutant lacking PSI activity. CO(2) uptake was drastically inhibited by the uncouplers carbonyl cyanide m-chlorophenylhydrazone (CCCP) and ammonia but substantially less so by the inhibitors of ATP formation arsenate and N, N,-dicyclohexylcarbodiimide (DCCD). Thus a DeltamuH(+) generated by photosynthetic PSI electron transport apparently serves as the direct source of energy for CO(2) uptake. Under low light intensity, the rate of CO(2) uptake by a high-CO(2)-requiring mutant of Synechococcus sp. PCC7942, at a CO(2) concentration below its threshold for CO(2) fixation, was higher than that of the wild type. At saturating light intensity, net CO(2) uptake was similar in the wild type and in the mutant IL-3 suggesting common limitation by the rate of conversion of CO(2) to HCO3(-). These findings are consistent with a model postulating that electron transport-dependent formation of alkaline domains on the thylakoid membrane energizes intracellular conversion of CO(2) to HCO3(-).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M101973200 | DOI Listing |
Sci Total Environ
January 2025
Geology and Sustainable Mining Institute, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco.
In the face of the climate change crisis, circular economy (CE) is put forward as a promising key to the sustainable development goals (SDGs) riddle. In this context that affects developed and developing countries alike, circular initiatives arise, such is the case for Morocco where an industrial synergy based on the CE concept of 'waste is food' can be envisioned between the local phosphate and cement industries. In order to support and guide this initiative, a life cycle assessment (LCA) was conducted to compare the environmental performance of the production of ordinary Portland cement (OPC), limestone calcined clay cement (LC3) and a phosphate waste-based cement known as calcined marl cement (CMC).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
Molecular simulations offer valuable insights into thermosetting polymers' microstructures and interactions with small molecules, aiding in the development of advanced materials. In this study, we design two cyanate resin models featuring monomers of different sizes and employ a previously developed method to generate crosslinked structures. We then analyze their crosslinking processes and physicochemical properties.
View Article and Find Full Text PDFMolecules
January 2025
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
CO capture from the flue gas is a promising approach to mitigate global warming. However, regulating the carbon-based adsorbent in terms of textural and surface modification is still a challenge. To overcome this issue, the present study depicts the development of cost-effective and high-performance CO adsorbents derived from petroleum coke, an industrial by-product, using a two-step process involving thiourea modification and KOH activation.
View Article and Find Full Text PDFMolecules
January 2025
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
The overexpression of the epidermal growth factor receptor (EGFR) in certain types of prostate cancers and glioblastoma makes it a promising target for targeted radioligand therapy. In this context, pairing an EGFR-targeting peptide with the emerging theranostic pair comprising the Auger electron emitter cobalt-58m (Co) and the Positron Emission Tomography-isotope cobalt-55 (Co) would be of great interest for creating novel radiopharmaceuticals for prostate cancer and glioblastoma theranostics. In this study, GE11 (YHWYGYTPQNVI) was investigated for its EGFR-targeting potential when conjugated using click chemistry to N1-((triazol-4-yl)methyl)-N1,N2,N2-tris(pyridin-2-ylmethyl)ethane-1,2-diamine (TZTPEN).
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China.
The carbon sink function performed by the different vegetation types along the environmental gradient in coastal zones plays a vital role in mitigating climate change. However, inadequate understanding of its spatiotemporal variations across different vegetation types and associated regulatory mechanisms hampers determining its potential shifts in a changing climate. Here, we present long-term (2011-2022) eddy covariance measurements of the net ecosystem exchange (NEE) of CO at three sites with different vegetation types (tidal wetland, nontidal wetland, and cropland) in a coastal zone to examine the role of vegetation type on annual carbon sink strength.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!