An experimental system is described, permitting a detailed and systematic analysis of the factors governing self-assembly of amphipathic helices, e.g. to a four-helical bundle, a subject of major relevance for tertiary structure formation, protein folding and design. Following the Template Assembled Synthetic Proteins (TASP) approach, helices of different packing potential are competitively assembled in solution with a preformed two-helix TASP molecule, and after equilibration are covalently attached ('template trapping') via chemoselective thioether formation. The quantitative analysis of the individual TASP molecules by high performance liquid chromatography (HPLC) and electrospray mass spectrometry (ES-MS) allows the delineation of the role of complementary packing in helix bundle formation. The procedure established represents a general tool for the experimental verification of modern concepts in molecular recognition.

Download full-text PDF

Source
http://dx.doi.org/10.1002/psc.308DOI Listing

Publication Analysis

Top Keywords

protein design
4
design folding
4
folding template
4
template trapping
4
trapping self-assembled
4
self-assembled helical
4
helical bundles
4
bundles experimental
4
experimental system
4
system described
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!