A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Role of extracellular molecular chaperones in the folding of oxidized proteins. Refolding of colloidal thyroglobulin by protein disulfide isomerase and immunoglobulin heavy chain-binding protein. | LitMetric

Role of extracellular molecular chaperones in the folding of oxidized proteins. Refolding of colloidal thyroglobulin by protein disulfide isomerase and immunoglobulin heavy chain-binding protein.

J Biol Chem

Unité 555 INSERM and Laboratoire de Biochimie Endocrinienne et Métabolique, Faculté de Médecine, Université de la Méditerranée, 13385 Marseille Cedex 5, France.

Published: June 2001

The process of thyroid hormone synthesis, which occurs in the lumen of the thyroid follicles, results from an oxidative reaction leading, as side effects, to the multimerization of thyroglobulin (TG), the prothyroid hormone. Although hormone synthesis is a continuous process, the amount of Tg multimers is relatively constant. Here, we investigated the role of two molecular chaperones, protein disulfide isomerase (PDI) and immunoglobulin heavy chain-binding protein (BiP), present in the follicular lumen, on the multimerization process due to oxidation using both native Tg and its N-terminal domain (NTD). In vitro, PDI decreased multimerization of Tg and even suppressed the formation of NTD multimers. Under the same conditions, BiP was able to bind to Tg and NTD multimers but did not affect the process of multimerization. Associating BiP with PDI did not enhance the ability of PDI to limit the formation of multimers produced by oxidation. However, when BiP and PDI were reacted together with the multimeric forms and for a longer time (48 h), BiP greatly increased the efficiency of PDI. Accordingly, these two molecular chaperones probably act sequentially on the reduction of the intermolecular disulfide bridges. In the thyroid, a similar process may also be effective and participate in limiting the amount of Tg multimers present in the colloid. These results suggest that extracellular molecular chaperones play a similar role to that occurring in the endoplasmic reticulum and, furthermore, take part in the control of multimerization and aggregation of proteins formed by oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M101086200DOI Listing

Publication Analysis

Top Keywords

molecular chaperones
16
extracellular molecular
8
protein disulfide
8
disulfide isomerase
8
immunoglobulin heavy
8
heavy chain-binding
8
chain-binding protein
8
hormone synthesis
8
amount multimers
8
ntd multimers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!