Epithelial cells lining the airways are thought to play a prominent role in respiratory diseases. We utilized cDNA representational difference analysis to identify the genes in which expression is induced by the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1beta in primary human bronchial epithelial cells and hence are relevant to airway inflammation. Hybridization of the subtraction product to arrayed cDNAs indicated that known tumor necrosis factor-alpha- and interleukin-1beta-inducible genes such as B94, Zfp36, and regulated on activation normal T cell expressed and secreted were represented, confirming the success of the subtraction experiment. A 1,152-clone library potentially representing genes with higher transcript levels in cytokine-treated human bronchial epithelial cells was generated and sequenced. Sequence similarity searches indicated that these clones represented 57 genes of known function, 1 gene of unknown function, 6 expressed sequence tags, and 2 novel sequences. The expression of 19 of these clones was studied by a combination of Northern blotting and RT-PCR analyses and confirmation of differential expression for 10 known genes, 2 expressed sequence tags, and a novel sequence not represented in any of the public databases was obtained. Thus cDNA representational difference analysis was utilized to isolate known and novel differentially expressed genes, which putatively play a role in airway inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.2001.280.5.L841 | DOI Listing |
iScience
January 2025
College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China.
Pyroptosis plays an important role in attracting innate immune cells to eliminate infected niches. Our study focuses on how influenza A virus (IAV) infection triggers pyroptosis in respiratory epithelial cells. Here, we report that IAV infection induces pyroptosis in a human and murine airway epithelial cell line.
View Article and Find Full Text PDFHeliyon
January 2025
School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
Schwann cells, as crucial regenerative cells, possess the ability to facilitate axon growth following peripheral nerve injury. However, the regeneration efficiency dominated by Schwann cells is impaired by factors such as the severity of peripheral nervous injury, aging, and metabolic disease. Cause the limitations of clinical treatments, it is necessary to urgently search for new substances that could reinforce the functionality of Schwann cells and promote nerve regeneration.
View Article and Find Full Text PDFACS Med Chem Lett
January 2025
Chapman University School of Pharmacy, Irvine, California 92618, United States.
Selective targeting of cancer cells via overexpressed cell-surface receptors is a promising strategy to enhance chemotherapy efficacy and minimize off-target side effects. In this study, we designed peptide 31 (YHWYGYTPERVI) to target the overexpressed epidermal growth factor receptor (EGFR) in triple-negative breast cancer (TNBC) cells. Peptide 31 is internalized by TNBC cells through EGFR-mediated endocytosis and shares sequence and structural similarities with human EGF (hEGF), a natural EGFR ligand.
View Article and Find Full Text PDFMonaldi Arch Chest Dis
January 2025
Section of Respiratory Medicine, Department of Translational Medicine, University of Ferrara.
Mucus hypersecretion is a trait of chronic obstructive pulmonary disease (COPD) associated with poorer outcomes. As it may be present before airway obstruction, its early treatment may have a preventive role. This narrative review of the literature presents the role of mucus dysfunction in COPD, its pathophysiology, and the rationale for the use of N-acetylcysteine (NAC).
View Article and Find Full Text PDFAnal Chem
January 2025
School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
The ability to identify unknown risks is the key to improving the level of food safety. However, the conventional nontargeted screening methods for new contaminant identification and risk assessment remain difficult work. Herein, a toxic-oriented screening platform based on high-expression epidermal growth factor receptor HEK293 cell membrane-coated magnetic nanoparticles (EGFR/MNPs) was first used for the discovery of unknown contaminants from food samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!