Background And Purpose: The diagnosis of brain tumors after high-dose radiation therapy is frequently limited by the lack of metabolic discrimination available with conventional imaging methods. The purpose of this study was to use proton MR spectroscopy to investigate serial changes in recurrent malignant gliomas after gamma knife radiosurgery to characterize tissue response to high-dose radiation.

Methods: Eighteen patients with recurrent gliomas were studied with MR imaging and 3D proton MR spectroscopic imaging at the time of radiosurgery and at regular time points thereafter. Choline (Cho) and N-acetyl aspartate levels were calculated on a voxel-by-voxel basis and compared with levels found in normal tissue and with levels observed at previous time points. The results of the spectral analysis were then compared with the radiologic findings. Statistical comparisons were precluded by the small sample sizes involved.

Results: Response within the gamma knife target was observed as a reduction of Cho levels and an increase in lactate/lipid levels, typically within 6 months of treatment. Increases in Cho correlated with poor radiologic response and suggested tumor recurrence, confirmed histologically in six cases. The development of a spectral abnormality preceded a coincident increase in contrast enhancement by 1 to 2 months in nine cases.

Conclusion: Proton MR spectroscopic imaging provided diagnostic and monitoring information before and after radiosurgery. Evaluation of metabolic changes with proton MR spectroscopy and structural changes with MR imaging improved tissue discrimination and provided correlation with histologic findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7976000PMC

Publication Analysis

Top Keywords

proton spectroscopic
12
spectroscopic imaging
12
gamma knife
12
recurrent malignant
8
malignant gliomas
8
gliomas gamma
8
knife radiosurgery
8
proton spectroscopy
8
time points
8
imaging
6

Similar Publications

Atomic-level Ru-Ir mixing in rutile-type (RuIr)O for efficient and durable oxygen evolution catalysis.

Nat Commun

January 2025

Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, Republic of Korea.

The success of proton exchange membrane water electrolysis (PEMWE) depends on active and robust electrocatalysts to facilitate oxygen evolution reaction (OER). Heteroatom-doped-RuO has emerged as a promising electrocatalysts because heteroatoms suppress lattice oxygen participation in the OER, thereby preventing the destabilization of surface Ru and catalyst degradation. However, identifying suitable heteroatoms and achieving their atomic-scale coupling with Ru atoms are nontrivial tasks.

View Article and Find Full Text PDF

In biological systems, heme-copper oxidase (HCO) enzymes play a crucial role in the oxygen reduction reaction (ORR), where the pivotal O-O bond cleavage of the (heme)Fe-peroxo-Cu intermediate is facilitated by active-site (peroxo core) hydrogen bonding followed by proton-coupled electron transfer (PCET) from a nearby (phenolic) tyrosine residue. A useful approach to comprehend the fundamental relationships among H-bonding/proton/H-atom donors and their abilities to induce O-O bond homolysis involves the investigation of synthetic, bioinspired model systems where the exogenous substrate properties (such as p and bond dissociation energy (BDE)) can be systematically altered. This report details the reactivity of a heme-peroxo-copper HCO model complex (LS-4DCHIm) toward a series of substituted catechol substrates that span a range of p and O-H bond BDE values, exhibiting different reaction mechanisms.

View Article and Find Full Text PDF

Chitin is the second most abundant biopolymer in nature after cellulose and is composed of N-acetylglucosamine (GlcNAc) connected via β(1 → 4)-glycosidic bonds. Despite its prominence in nature and diverse roles in pharmaceutical and food technological applications, there is still a need to develop methods to study structure and function of chitin and its corresponding oligomers. Efforts have been made to analyse chitin oligomers by NMR spectroscopy, but spectral overlap has prevented any differentiation between the interior residues.

View Article and Find Full Text PDF

Excited-state proton transfer (ESPT) in organic photoacids is a widely studied phenomenon in which D-luciferin is of special mention, considering the fact that apart from its phenolic OH group, the nitrogen atoms at either of the two thiazole moieties could also participate in hydrogen bonding interactions with a proton-donating solvent during ESPT. As a result, several transient species could appear during the ESPT process. We hereby deploy subpicosecond time-resolved fluorescence upconversion (FLUP) and transient absorption (TA) spectroscopic techniques to understand the detailed photophysics of D-luciferin in water as well as in dimethyl sulfoxide (DMSO) and ethanol.

View Article and Find Full Text PDF

A Convenient One-Pot Synthesis of Novel Benzimidazole-Thiazinone Derivatives and Their Antimicrobial Activity.

Antibiotics (Basel)

December 2024

Medicinal Chemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.

The increasing prevalence of antimicrobial resistant highlights the urgent need for the new therapeutic agents. This study aimed to design and synthesize fused tricyclic benzimidazole-thiazinone derivatives (-) through a convenient method and evaluate their antimicrobial activity against various microorganisms. A series of fused tricyclic benzimidazole-thiazinone derivatives was rationally designed and synthesized in one pot by the reaction between trans substituted acrylic acids and 1-benzo[d]imidazole-2-thiol using coupling reagent TBTU (2-(1-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!