Phonon density-of-states curves were obtained from inelastic neutron scattering spectra from the three crystalline phases of uranium at temperatures from 50 to 1213 K. The alpha-phase showed an unusually large thermal softening of phonon frequencies. Analysis of the vibrational power spectrum showed that this phonon softening originates with the softening of a harmonic solid, as opposed to vibrations in anharmonic potentials. It follows that thermal excitations of electronic states are more significant thermodynamically than are the classical volume effects. For the alpha-beta and beta-gamma phase transitions, vibrational and electronic entropies were comparable.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.86.3076DOI Listing

Publication Analysis

Top Keywords

softening phonon
8
large harmonic
4
softening
4
harmonic softening
4
phonon
4
phonon density
4
density states
4
states uranium
4
uranium phonon
4
phonon density-of-states
4

Similar Publications

Emergent superconductivity driven by Van Hove singularity in a Janus MoPS monolayer.

Phys Chem Chem Phys

January 2025

School of Physics and Electronics, Hunan University, Changsha 410082, China.

Two-dimensional (2D) Janus structures with the breaking of out-of-plane mirror symmetry can induce many interesting physical phenomena, and have attracted widespread attention. Herein, we propose a MoPS monolayer with mirror asymmetry, identified by first-principles structural search calculations, which demonstrates high thermodynamic and dynamic stability. Our findings reveal that Mo 4d-orbitals dominate the metallicity, significantly enhancing the density of states near the Fermi level due to Van Hove singularities (VHSs), leading to the existence of phonon-mediated superconductivity.

View Article and Find Full Text PDF

Controlling vibrational modes and energy gap by creating van der Waals (vdW) heterostructures through strain engineering is a novel approach to tailor the vibrational and electronic properties of two-dimensional materials. Numerous theoretical and experimental studies have significantly contributed to analyzing the properties of transition metal dichalcogenides, known for their multifunctional applications. In this study, we investigate the strain and stacking dependent vibrational properties of WSe/MoSeand MoSe/WSe/MoSevdW heterostructures usingbased density functional theory calculations.

View Article and Find Full Text PDF

Coupling-Induced Dynamic Off-Centering of Cu Drives High Thermoelectric Performance in TlCuS.

J Am Chem Soc

January 2025

New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Jakkur P.O. 560064, India.

Seeking new and efficient thermoelectric materials requires a detailed comprehension of chemical bonding and structure in solids at microscopic levels, which dictates their intriguing physical and chemical properties. Herein, we investigate the influence of local structural distortion on the thermoelectric properties of TlCuS, a layered metal sulfide featuring edge-shared Cu-S tetrahedra within CuS layers. While powder X-ray diffraction suggests average crystallographic symmetry with no distortion in CuS tetrahedra, the synchrotron X-ray pair distribution function experiment exposes concealed local symmetry breaking, with dynamic off-centering distortions of the CuS tetrahedra.

View Article and Find Full Text PDF

Twisted van der Waals heterostructures have led to emerging layer-dependent correlated physics in moiré potentials. While optoelectronic controls over interlayer electronic coupling have been reported, the concomitant interlayer vibration has not yet been controlled. Here, we report experimental evidence of ultrafast optical control over the amplitude and oscillation period of interlayer breathing phonons in WSe/WS heterobilayers.

View Article and Find Full Text PDF

Understanding surface collective dynamics in quantum materials is crucial for advancing quantum technologies. For example, surface phonon modes in quantum paraelectrics are thought to be essential in facilitating interfacial superconductivity. However, detecting these modes, especially below 1 terahertz, is challenging because of limited sampling volumes and the need for high spectroscopic resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!