We describe damping of hypersonic and ultrasonic longitudinal acoustic (LA) phonons in crystals of Cs 5H (3)(SO (4))(4);xH 2O (PCHS) between 100 and 360 K. The damping of LA phonons exhibits strong dispersion caused by relaxation processes in the region of transformation into the glasslike phase (T(g) approximately 260 K). Near T(g) the damping of ultrasonic phonons propagating in the basal plane reflects the cooperative freezing of acid protons. The damping of LA phonons propagating perpendicular to the basal plane can be fit by the Debye model and is due to the interaction between protons and LA phonons. This suggests that the proton glass state that is realized at T
Download full-text PDF
Source
http://dx.doi.org/10.1103/PhysRevLett.86.2838 DOI Listing Publication Analysis
Top Keywords
Adv Sci (Weinh)
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.
High temperature-proton exchange membrane fuel cells (HT-PEMFC) call for ionomers with low humidity dependence and elevated-temperature resistance. Traditional perfluorosulfonic acid (PFSA) ionomers encounter challenges in meeting these stringent requirements. Herein, this study reports a perfluoroimide multi-acid (PFMA) ionomer with dual active centers achieved through the incorporation of sulfonimide and phosphonic acid groups into the side chain.
View Article and Find Full Text PDFSmall
January 2025
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
Superhydrophobic surfaces have attracted tremendous attention due to their intriguing lotus-leaf-like water-repelling phenomenon and wide applications, however, most superhydrophobic coatings are prepared with environmentally unfriendly organic solvents and suffer from poor mechanical strength. To solve these issues, waterborne recoatable superhydrophobic (WRSH) coatings are developed based on a novel self-synthesized water-soluble fluorinated acrylic polymer and hydrophobic modified silica nanoparticles. The trade-off between waterborne and superhydrophobicity is well mediated by protonation and deprotonation of the fluorinated acrylic polymer.
View Article and Find Full Text PDFInorg Chem
January 2025
Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan.
Electrochemical devices that can operate at temperatures of 200-300 °C are expected to become the next-generation energy conversion devices in fuel cells and electrosynthesis, which are important for achieving carbon neutrality. Proton conductors based on phosphate glasses are being developed as candidate materials for such devices. We recently developed a glass proton conductor by using silicophosphoric acid based on the idea of solidifying phosphoric acid with silicon as a cross-linking glass framework.
View Article and Find Full Text PDFAMB Express
December 2024
Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha), Central South University, No. 311, Yingpan Road, Changsha, 410005, Hunan, China.
Antibiotic resistance by methicillin-resistant Staphylococcus aureus (MRSA) is an urgent threat to human health. The biofilm and persister cells formation ability of MRSA and Staphylococcus epidermidis often companied with extremely high antimicrobial resistance. Pinaverium bromide (PVB) is an antispasmodic compound mainly used for irritable bowel syndrome.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.
Polyethylene glycol (PEG)-coated microsized artificial oxygen carriers (AOCs) with a perfluorooctyl bromide (PFOB) core and poly(lactide--caprolactone) (PLC) shell were successfully fabricated using Shirasu porous glass (SPG) membrane emulsification. The PEG coating was achieved by adding the polylactide--polyethylene glycol--polylactide (PLA-PEG-PLA) block copolymer to the disperse phase during the SPG membrane emulsification process. During the DCM evaporation process, the three-layer structure of the PEG layer, PLC shell, and PFOB core of the AOCs spontaneously formed by phase separation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!