Sandpile model with tokamaklike enhanced confinement phenomenology.

Phys Rev Lett

Physics Department, University of Warwick, Coventry CV4 7AL, United Kingdom.

Published: March 2001

Confinement phenomenology characteristic of magnetically confined plasmas emerges naturally from a simple sandpile algorithm when the parameter controlling redistribution scale length is varied. Close analogs are found for enhanced confinement, edge pedestals, and edge localized modes (ELMs), and for the qualitative correlations between them. These results suggest that tokamak observations of avalanching transport are deeply linked to the existence of enhanced confinement and ELMs.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.86.2814DOI Listing

Publication Analysis

Top Keywords

enhanced confinement
12
confinement phenomenology
8
sandpile model
4
model tokamaklike
4
tokamaklike enhanced
4
confinement
4
phenomenology confinement
4
phenomenology characteristic
4
characteristic magnetically
4
magnetically confined
4

Similar Publications

The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation.

View Article and Find Full Text PDF

Rigid reinforced concrete (RC) frames are generally adopted as stiff elements to make the building structures resistant to seismic forces. However, a method has yet to be fully sought to provide earthquake resistance through optimizing beam and column performance in a rigid frame. Due to its high corrosion resistance, the integration of CFRP offers an opportunity to reduce frequent repairs and increase durability.

View Article and Find Full Text PDF

Terrain Traversability via Sensed Data for Robots Operating Inside Heterogeneous, Highly Unstructured Spaces.

Sensors (Basel)

January 2025

Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.

This paper presents a comprehensive approach to evaluating the ability of multi-legged robots to traverse confined and geometrically complex unstructured environments. The proposed approach utilizes advanced point cloud processing techniques integrating voxel-filtered cloud, boundary and mesh generation, and dynamic traversability analysis to enhance the robot's terrain perception and navigation. The proposed framework was validated through rigorous simulation and experimental testing with humanoid robots, showcasing the potential of the proposed approach for use in applications/environments characterized by complex environmental features (navigation inside collapsed buildings).

View Article and Find Full Text PDF

CO flooding plays a crucial role in enhancing oil recovery and achieving carbon reduction targets, particularly in unconventional reservoirs with complex pore structures. The phase behavior of CO and hydrocarbons at different scales significantly affects oil recovery efficiency, yet its underlying mechanisms remain insufficiently understood. This study improves existing thermodynamic models by introducing Helmholtz free energy as a convergence criterion and incorporating adsorption effects in micro- and nano-scale pores.

View Article and Find Full Text PDF

Ocean oil spills can severely impact ecosystems and disrupt marine biodiversity and habitats. Microbial remediation is an effective method for removing thin oil slick contamination. In this study, the adsorption and degradation of low-concentration oil spills by Chlorella vulgaris LH-1 immobilized in konjac glucomannan (KGM) aerogel were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!