Collective resonance model of energy exchange in 3D nonequipartitioned beams.

Phys Rev Lett

GSI Darmstadt, Planckstrasse 1, 64291 Darmstadt, Germany.

Published: March 2001

Energy exchange between the longitudinal and transverse degrees of freedom of nonequipartitioned bunched beams (non-neutral plasmas) is investigated by means of 3D simulation. It is found that collective instability may lead to energy transfer in the direction of equipartition, without full progression to it, in certain bounded regions of parameter space where internal resonance conditions are satisfied, in good agreement with stability charts from an earlier derived 2D Vlasov analysis. Nonequipartitioned stable equilibria, however, exist in relatively wide regimes of parameter space. This provides evidence that such regimes may be safely used in the design of future high-intensity linacs.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.86.2313DOI Listing

Publication Analysis

Top Keywords

energy exchange
8
parameter space
8
collective resonance
4
resonance model
4
model energy
4
exchange nonequipartitioned
4
nonequipartitioned beams
4
beams energy
4
exchange longitudinal
4
longitudinal transverse
4

Similar Publications

The long-term stability of Pt-based catalysts is critical to the reliability of proton exchange membrane fuel cells (PEMFCs), and receives constant attention. However, the current knowledge of Pt oxidation is restricted to unrealistic PEMFC cathode environment or operation, which questions its practical relevance. Herein, Pt oxidation is investigated directly in a PEMFC with stroboscopic operando high energy X-ray scattering.

View Article and Find Full Text PDF

Hydroxide exchange membrane (HEM) water electrolysis is promising for green hydrogen production due to its low cost and excellent performance. However, HEM often has insufficient stability in strong alkaline solutions, particularly under in-situ electrolysis operation conditions, hindering its commercialization. In this study, we discover that the in-situ stability of HEM is primarily impaired by the locally accumulated heat in HEM due to its low thermal conductivity.

View Article and Find Full Text PDF

Is Drosophila Larval Competition Involved in Incipient Speciation?

J Chem Ecol

January 2025

Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France.

Geographical, ethological, temporal and ecological barriers can affect interbreeding between populations deriving from an ancestral population, this progressively leading to speciation. A rare case of incipient speciation currently occurs between Drosophila melanogaster populations sampled in Zimbabwe (Z) and all other populations (M). This phenomenon was initially characterized by Z females refusing to mate with M males.

View Article and Find Full Text PDF

Insights into the adsorption mechanisms of VOCs molecules on non-oxidized and oxidized SnO (110) monolayer: DFT analysis.

J Mol Model

January 2025

Laboratory of Nanostructures and Advanced Materials, Mechanics and Thermofluids, Faculty of Sciences and Technologies, Hassan II University of Casablanca, B.P 146, 20650, Mohammedia, Morocco.

Context: Designing efficient sensitive materials for the detection of volatile organic compounds (VOCs) such as ethanol, acetone, and benzene is stringent owing to the significant environmental and health risks induced by these compounds, in addition to their role as biomarkers for chronic diseases and food quality. This study investigates the adsorption mechanisms of VOC molecules (ethanol, acetone, and benzene) on both non-oxidized and oxidized SnO (110) monolayers and identifies the most suitable surface for gas sensing applications. For this, we examined structural properties, adsorption energies, density of states, gas responses, and recovery times.

View Article and Find Full Text PDF

Phonon Involved Photoluminescence of Mn Ions Doped CsPbCl Micro-Size Perovskite Assembled Crystals.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China.

Mn ions doped CsPbCl perovskite nanocrystals (NCs) exhibit superiority of spin-associated optical and electrical properties. However, precisely controlling the doping concentration, doping location, and the mono-distribution of Mn ions in the large-micro-size CsPbCl perovskite host is a formidable challenge. Here, the micro size CsPbCl perovskite crystals (MCs) are reported with uniform Mn ions doping by self-assembly of Mn ions doped CsPbCl perovskite NCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!