A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Uncoupling protein 2: a possible link between fatty acid excess and impaired glucose-induced insulin secretion? | LitMetric

Uncoupling protein 2: a possible link between fatty acid excess and impaired glucose-induced insulin secretion?

Diabetes

Department of Medical Biochemistry, Centre Médical Universitaire, Medical Faculty, University of Geneva, Switzerland.

Published: April 2001

The mechanism by which long-term exposure of the beta-cell to elevated concentrations of fatty acid alters glucose-induced insulin secretion has been examined. Exposure of INS-1 beta-cells to 0.4 mmol/l oleate for 72 h increased basal insulin secretion and decreased insulin release in response to high glucose, but not in response to agents acting at the level of the K(ATP) channel (tolbutamide) or beyond (elevated KCl). This also suppressed the glucose-induced increase in the cellular ATP-to-ADP ratio. The depolarization of the plasma membrane promoted by glucose was decreased after oleate exposure, whereas the response to KCl was unchanged. Cells exposed to free fatty acids displayed a lower mitochondrial membrane potential and a decreased glucose-induced hyperpolarization. The possible implication of uncoupling protein (UCP)-2 in the altered secretory response was examined by measuring UCP2 gene expression after chronic exposure of the cells to fatty acids. UCP2 mRNA and protein were increased twofold by oleate. Palmitate and the nonoxidizable fatty acid bromopalmitate had similar effects on UCP2 mRNA, suggesting that UCP2 gene induction by fatty acids does not require their metabolism. The data are compatible with a role of UCP2 and partial mitochondrial uncoupling in the decreased secretory response to glucose observed after chronic exposure of the beta-cell to elevated fatty acids, and suggest that the expression and/or activity of the protein may modulate insulin secretion in response to glucose.

Download full-text PDF

Source
http://dx.doi.org/10.2337/diabetes.50.4.803DOI Listing

Publication Analysis

Top Keywords

fatty acids
16
fatty acid
12
insulin secretion
12
uncoupling protein
8
glucose-induced insulin
8
exposure beta-cell
8
beta-cell elevated
8
secretory response
8
ucp2 gene
8
chronic exposure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!