Background, Aims: The habit of betel nut chewing impinges on the daily lives of approximately 200 million people. Betel quid chewers have a higher prevalence of periodontal diseases than non-chewers. This study examined the pathobiological effects of arecoline, a major component of the betel nut alkaloids, on human periodontal ligament fibroblasts (PDLF) in vitro.

Method: Cell viability, proliferation, protein synthesis, and cellular thiol levels were used to investigate the effects of human PDLF exposed to arecoline levels of 0 to 200 microg/ml. In addition, nicotine was added to test how it modulated the effects of arecoline.

Results: Arecoline significantly inhibited cell proliferation in a dose-dependent manner. At concentrations of 10 and 30 microg/ml, arecoline suppressed the growth of PDLF by 20% and 50% (p < 0.05), respectively. Arecoline also decreased protein synthesis in a dose-dependent manner during a 24-h culture period. A 100 microg/ ml concentration level of arecoline significantly inhibited protein synthesis to only 50% of that in the untreated control (p < 0.05). Moreover, arecoline significantly depleted intracellular thiols in a dose-dependent manner. At concentrations of 25 microg/ml and 100 microg/ml, arecoline depleted about 18% and 56% of thiols (p < 0.05), respectively. This suggests that arecoline itself might augment the destruction of periodontium associated with betel nut use. Furthermore, the addition of nicotine acted with a synergistic effect on the arecoline-induced cytotoxicity. At a concentration of 60 microg/ml, arecoline suppressed the growth of PDLF by about 33% and 5 mM nicotine enhanced the arecoline-induced cytotoxic response to cause about 66% cell death.

Conclusion: During thiol depletion, arecoline may render human PDLF more vulnerable to reactive agents within cigarettes. Taken together, people who combine habits of betel nut chewing with cigarette smoking could be more susceptible to periodontium damage than betel nut chewing alone.

Download full-text PDF

Source
http://dx.doi.org/10.1034/j.1600-051x.2001.028003277.xDOI Listing

Publication Analysis

Top Keywords

betel nut
20
arecoline
12
nut chewing
12
protein synthesis
12
dose-dependent manner
12
microg/ml arecoline
12
effects arecoline
8
human periodontal
8
periodontal ligament
8
ligament fibroblasts
8

Similar Publications

In this work, the characterization and diversity of 347 compounds from betel nut ( L.) were analyzed for the first time. The dataset of compounds from betel nut (BNC) was compared to compounds from food.

View Article and Find Full Text PDF

Background: Kyasanur forest disease virus (KFDV) is a tick-borne flavivirus causing debilitating and potentially fatal disease in people in the Western Ghats region of India. The transmission cycle is complex, involving multiple vector and host species, but there are significant gaps in ecological knowledge. Empirical data on pathogen-vector-host interactions and incrimination have not been updated since the last century, despite significant local changes in land use and the expansion of KFD to new areas.

View Article and Find Full Text PDF

Alkaloids and nitrosamines in betel quid: A biochemical exploration of carcinogenicity.

Chem Biol Interact

January 2025

Department of Community Dental Health, Faculty of Dental Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka.

Betel quid contains two major ingredients; Areca catechu and Piper betel, often consumed with slaked lime, tobacco, certain flavouring agents, colouring agents, herbs, and spices according to personal preferences. The areca nut alkaloids (arecoline, arecaidine, guvacine, and guvacoline), and tobacco alkaloids (nicotine, nornicotine) undergo nitrosation during chewing in the oral cavity with the presence of nitrite and thiocyanate and endogenously. Among the nitrosation products generated areca nut-derived nitrosamine (ADNA): 3-(methylnitrosamino) Propionitrile (MNPN) and the two tobacco-specific nitrosamines (TSNAs); N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone) (NNK) are considered Group 1 human carcinogens.

View Article and Find Full Text PDF

Betel nut chewing, common in several Asian populations, is linked to increased cancer risk, including oral, esophageal, gastric, and hepatocellular carcinoma. Aspirin shows potential as a chemopreventive agent. This study investigates the association between aspirin use and cancer risk among betel nut chewers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!