Three "dimeric" C(9)-carbamates of quinine (QN) and quinidine (QD), that is, QN-QN, QD-QD, and QN-QD (chemically prepared mixture of the two cinchona-derived subunits), separated by an ethylene spacer were synthesized and used as chiral selectors for HPLC and capillary electrophoresis (CE) for the resolution of chiral acids. The chiral recognition abilities of these dimers and of several physically prepared mixtures thereof were compared in order to estimate the contribution of every cinchona scaffold to the overall enantioselectivity. The diverse phenomena observed in nonaqueous capillary electrophoresis (NACE), either using the selector added to the background electrolyte (BGE) in the total filling or partial filling mode, led us to rationalize, taking into account the relative mobilities of the chiral selectors in the capillary. The chromatographic and electrophoretic properties were compared with those of the corresponding "monomeric" QN and QD carbamates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chir.1017DOI Listing

Publication Analysis

Top Keywords

chiral selectors
12
quinine quinidine
8
capillary electrophoresis
8
chiral
5
evaluation contribution
4
contribution enantioselectivity
4
enantioselectivity quinine
4
quinidine scaffolds
4
scaffolds chemically
4
chemically physically
4

Similar Publications

Chiral Recognition of Butylone by Methylated β-Cyclodextrin Inclusion Complexes: Molecular Calculations and Two-Level Factorial Designs.

ACS Omega

January 2025

School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, 99 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.

The integration of molecular docking and AM1 calculations has elucidated the complexation behavior of butylone enantiomers with methylated β-cyclodextrin derivatives. Our study reveals that butylone can adopt two distinct conformations within the β-cyclodextrin cavity, with one conformation being preferentially stabilized due to its favorable binding energy. This conformation preference is influenced by the methylation at the O2, O3, and O6 positions of β-cyclodextrin, which significantly affects complex stability and solvation properties.

View Article and Find Full Text PDF

Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.

View Article and Find Full Text PDF

Chiral isomers show different behaviours and properties in physiological activities. It is of great significance to find productive approach to realize the recognition of enantiomers, which is a key issue in biochemical and pharmaceutical fields. Nowadays, chiral identification can be successfully achieved according to the discrepancies of special signals correlated with different enantiomers of multiple electrode structures.

View Article and Find Full Text PDF

Computer simulation was utilized to characterize the electrophoretic processes occurring during the enantioselective capillary electrophoresis-mass spectrometry (CE-MS) analysis of ketamine, norketamine, and hydroxynorketamine in a system with partial filling of the capillary with 19 mM (equals 5%) of highly sulfated γ-cyclodextrin (HS-γ-CD) and analyte detection on the cathodic side. Provided that the sample is applied without or with a small amount of the chiral selector, analytes become quickly focused and separated in the thereby formed HS-γ-CD gradient at the cathodic end of the sample compartment. This gradient broadens with time, remains stationary, and gradually reduces its span from the lower side due to diffusion such that analytes with high affinity to the anionic selector become released onto the other side of the focusing gradient where anionic migration and defocusing occur concomitantly.

View Article and Find Full Text PDF

Background: Isotopologues resulting from the labelling of molecules with deuterium have attracted interest due to the isotope effect observed in chemistry and biosciences. Isotope effect may also play out in noncovalent interactions and mechanisms leading to intermolecular recognition. In chromatography, differences in retention time between isotopologues, as well as between isotopomers have been observed resulting in two different elution sequences (isotope effects): the normal isotope effect when heavier isotopologues retain longer than lighter analogues, and the inverse isotope effect featuring the opposite elution order.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!