Orexin-A and orexin-B are neuropeptides originally identified as endogenous ligands for two orphan G-protein-coupled receptors. Orexin neuropeptides (also known as hypocretins) are produced by a small group of neurons in the lateral hypothalamic and perifornical areas, a region classically implicated in the control of mammalian feeding behavior. Orexin neurons project throughout the central nervous system (CNS) to nuclei known to be important in the control of feeding, sleep-wakefulness, neuroendocrine homeostasis, and autonomic regulation. orexin mRNA expression is upregulated by fasting and insulin-induced hypoglycemia. C-fos expression in orexin neurons, an indicator of neuronal activation, is positively correlated with wakefulness and negatively correlated with rapid eye movement (REM) and non-REM sleep states. Intracerebroventricular administration of orexins has been shown to significantly increase food consumption, wakefulness, and locomotor activity in rodent models. Conversely, an orexin receptor antagonist inhibits food consumption. Targeted disruption of the orexin gene in mice produces a syndrome remarkably similar to human and canine narcolepsy, a sleep disorder characterized by excessive daytime sleepiness, cataplexy, and other pathological manifestations of the intrusion of REM sleep-related features into wakefulness. Furthermore, orexin knockout mice are hypophagic compared with weight and age-matched littermates, suggesting a role in modulating energy metabolism. These findings suggest that the orexin neuropeptide system plays a significant role in feeding and sleep-wakefulness regulation, possibly by coordinating the complex behavioral and physiologic responses of these complementary homeostatic functions.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev.neuro.24.1.429DOI Listing

Publication Analysis

Top Keywords

orexin
9
orexin neurons
8
feeding sleep-wakefulness
8
food consumption
8
eat sleep?
4
sleep? orexin
4
orexin regulation
4
feeding
4
regulation feeding
4
wakefulness
4

Similar Publications

Insomnia and some insomnia treatments can impact an individual's daytime functioning. Here, we performed post hoc analyses of patient-reported outcomes from a phase 3 clinical trial to assess the impact of lemborexant (LEM), a dual orexin receptor antagonist, on daytime functioning. Adults with insomnia were randomized 1:1:1 to receive placebo, LEM 5 mg (LEM5) or LEM 10 mg (LEM10) for 6 months.

View Article and Find Full Text PDF

Can serum orexin levels be used as a marker in childhood epilepsy?

Heliyon

January 2025

Department of Pediatric Neurology, University of Health Sciences, Gülhane Training and Research Hospital, Ankara, the Republic of Türkiye.

Objective: Epilepsy is one of the most common neurological diseases in the pediatric population. Orexins are excitatory peptides and associated with energy homeostasis, eating and drinking behaviors, sleep regulation, sleep-wake periods, analgesia, and cognitive activities such as attention, learning, and memory. The aim of this study was to reveal the relationship between plasma orexin levels and seizures in pediatric epilepsy patients with seizures, epilepsy patients in remission, and healthy control group with similar demographic characteristics.

View Article and Find Full Text PDF

Background: Evidence supports the common incidence of sleep disturbance in opioid use disorder (OUD) as a potential marker of disrupted orexin system functioning. This study evaluated the initial safety and tolerability of a challenge dose of lemborexant, a dual orexin antagonist, as an adjunct to buprenorphine/naloxone.

Methods: Patients (18-65 years old) with OUD receiving sublingual buprenorphine/naloxone, with a Pittsburgh Sleep Quality Index total score of 6 or higher, were recruited from outpatient clinics.

View Article and Find Full Text PDF

Background: Orexin neuropeptides help regulate sleep/wake states, respiration, and pain. However, their potential role in regulating breathing, particularly in perioperative settings, is not well understood. TAK-925 (danavorexton), a novel, orexin receptor 2-selective agonist, directly activates neurons associated with respiratory control in the brain and improves respiratory parameters in rodents undergoing fentanyl-induced sedation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!