Photosynthetic light acclimation of leaves can result from (i) changes in mass-based leaf nitrogen concentration, Nm, (ii) changes in leaf mass:area ratio, Ma, and (iii) partitioning of total leaf nitrogen among different pools of the photosynthetic machinery. We studied variations in Nm and Ma within the crowns of two peach (Prunus persica L. Batsch) trees grown in an orchard in Portugal, and one peach tree grown in an orchard in France. Each crown was digitized and a 3-D radiation transfer model was used to quantify the intra-crown variations in time-integrated leaf irradiance, . Nitrogen concentration, leaf mass:area ratio, chlorophyll concentration, and photosynthetic capacity were also measured on leaves sampled on five additional peach trees in the orchard in Portugal. The data were used to compute the coefficients of leaf nitrogen partitioning among carboxylation, bioenergetics, and light harvesting pools. Leaf mass:area ratio and area-based leaf nitrogen concentration, Na, were nonlinearly related to , and photosynthetic capacity was linearly related to Na. Photosynthetic light acclimation resulted mainly from changes in Ma and leaf nitrogen partitioning, and to a lesser extent from changes in Nm. This behavior contrasts with photosynthetic light acclimation observed in other tree species like walnut (Juglans regia L.) in which acclimation results primarily from changes in Ma.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/21.6.377DOI Listing

Publication Analysis

Top Keywords

leaf nitrogen
24
photosynthetic light
16
light acclimation
16
massarea ratio
16
nitrogen concentration
16
nitrogen partitioning
12
leaf massarea
12
leaf
10
nitrogen
8
concentration leaf
8

Similar Publications

Cultivable microbial communities associated with plants inhabiting extreme environments have great potential in biotechnological applications. However, there is a lack of knowledge about these microorganisms from Bryophyllum pinnatum (which survives in severely barren soil) and their ability to promote plant growth. The present study focused on the isolation, identification, biochemical characterization, and potential applications of root endophytic bacteria and rhizosphere bacteria.

View Article and Find Full Text PDF

Foliar traits can reflect fitness responses to environmental changes, such as changes in nutrient availability. Species may respond differently to these changes due to differences in traits and their plasticity. Traits and community composition together can influence forest nutrient cycling.

View Article and Find Full Text PDF

Temperate streams are subsidized by inputs of leaf litter peaking in fall. Yet, stream communities decompose dead leaves and integrate their energy into the aquatic food web throughout the whole year. Most studies investigating stream decomposition largely overlook long-term trajectories, which must be understood for an appropriate temporal upscaling of ecosystem processes.

View Article and Find Full Text PDF

Root functional traits are important predictors for plant resource acquisition strategies in subtropical forests.

Ecol Appl

January 2025

Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.

Intercorrelated aboveground traits associated with costs and plant growth have been widely used to predict vegetation in response to environmental changes. However, whether underground traits exhibit consistent responses remains unclear, particularly in N-rich subtropical forests. Responses of foliar and root morphological and physiological traits of tree and herb species after 8-year N, P, and combined N and P treatments (50 kg N, P, N and P ha year) were examined in leguminous Acacia auriculiformis (AA) and nonleguminous Eucalyptus urophylla (EU) forests in southern China.

View Article and Find Full Text PDF

Drought and nutrient-poor soils can increase the invasive potential of non-native species, further changing the ecosystems they invade. The high adaptability of these alien species, especially in their efficient use of resources, improves their resilience against abiotic stress. Here, we evaluated the response of the North American Quercus rubra L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!