The mechanisms by which ligand-stimulated generation of reactive oxygen species in nonphagocytic cells mediate biologic effects are largely unknown. The profibrotic cytokine, transforming growth factor-beta1 (TGF-beta1), generates extracellular hydrogen peroxide (H2O2) in contrast to intracellular reactive oxygen species production by certain mitogenic growth factors in human lung fibroblasts. To determine whether tyrosine residues in fibroblast-derived extracellular matrix (ECM) proteins may be targets of H2O2-mediated dityrosine-dependent cross-linking reactions in response to TGF-beta1, we utilized fluorophore-labeled tyramide, a structurally related phenolic compound that forms dimers with tyrosine, as a probe to detect such reactions under dynamic cell culture conditions. With this approach, a distinct pattern of fluorescent labeling that seems to target ECM proteins preferentially was observed in TGF-beta1-treated cells but not in control cells. This reaction required the presence of a heme peroxidase and was inhibited by catalase or diphenyliodonium (a flavoenzyme inhibitor), similar to the effect on TGF-beta1-induced dityrosine formation. Exogenous addition of H2O2 to control cells that do not release extracellular H2O2 produced a similar fluorescent labeling reaction. These results support the concept that, in the presence of heme peroxidases in vivo, TGF-beta1-induced H2O2 production by fibroblasts may mediate oxidative dityrosine-dependent cross-linking of ECM protein(s). This effect may be important in the pathogenesis of human fibrotic diseases characterized by overexpression/activation of TGF-beta1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M100426200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!