The Quinone-binding sites of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase.

J Biol Chem

Canadian Institutes of Health Research Group in the Molecular Biology of Membrane Proteins, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.

Published: May 2001

The Saccharomyces cerevisiae succinate dehydrogenase (SDH) of the mitochondrial electron transport chain oxidizes succinate and reduces ubiquinone. Using a random mutagenesis approach, we identified functionally important amino acid residues in one of the anchor subunits, Sdh4p. We analyzed three point mutations (F69V, S71A, and H99L) and one nonsense mutation (Y89OCH) that truncates the Sdh4p subunit at the third predicted transmembrane segment. The F69V and the S71A mutations result in greatly impaired respiratory growth in vivo and quinone reductase activities in vitro, with negligible effects on enzyme stability. In contrast, the Y89OCH and the H99L mutations elicit large structural perturbations that impair assembly as evidenced by reduced covalent FAD levels, membrane-associated succinate-phenazine methosulfate reductase activities, and thermal stability. We propose that the Phe-69 and the Ser-71 residues are involved in the formation of a quinone-binding site, whereas the His-99 residue is at the interface of the peripheral and the membrane domains. In addition, the properties of the Y89OCH mutation are consistent with the interpretation that the third transmembrane segment is not involved in catalysis but rather plays an important structural role. The mutant enzymes are differentially sensitive to a quinone analog inhibitor, providing further evidence for a two-quinone binding model in the yeast SDH.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M100184200DOI Listing

Publication Analysis

Top Keywords

saccharomyces cerevisiae
8
f69v s71a
8
transmembrane segment
8
reductase activities
8
quinone-binding sites
4
sites saccharomyces
4
cerevisiae succinate-ubiquinone
4
succinate-ubiquinone oxidoreductase
4
oxidoreductase saccharomyces
4
cerevisiae succinate
4

Similar Publications

Construction of isopentenol utilization pathway and artificial multifunctional enzyme for miltiradiene synthesis in Saccharomyces cerevisiae.

Bioresour Technol

January 2025

School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, PR China; Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, PR China. Electronic address:

Miltiradiene serves as a pivotal precursor for the synthesis of numerous abietane-type diterpenes with important pharmacological activities. The endogenous mevalonate (MVA) pathway is tightly regulated in Saccharomyces cerevisiae, which limits the availability of precursors for the heterologous production of miltiradiene. In this study, the orthogonal isopentenol utilization pathway (IUP) was constructed and investigated for its adaptability with mitochondria and peroxisomes in S.

View Article and Find Full Text PDF

Enhancing Cannabichromenic Acid Biosynthesis in .

ACS Synth Biol

January 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.

Cannabichromene (CBC), a valuable but extremely low-abundance component of cannabinoids in L., is known for its ability to promote neurogenesis. The scarcity of CBC in natural is primarily attributed to the inefficiency of the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4 phosphate (DOXP/MEP) and fatty acid metabolism pathways, along with the limited competitive advantage of cannabichromenic acid synthetase (CBCAS) compared to other cannabinoid synthases.

View Article and Find Full Text PDF

Fluorescence recovery after photobleaching (FRAP) can be employed to investigate membrane lipid mixing of vacuoles in live budding yeast cells and distinguish the fused, hemi-fused or non-fused states of these organelles under physiological conditions. Here, we describe a protocol for labeling the outer and inner leaflets of vacuoles in live cells that allow to detect hemifusion intermediates and, thus, identify components necessary for fusion pore opening.

View Article and Find Full Text PDF

Cell-free in vitro assays offer several advantages for elucidating molecular mechanisms underlying various biological processes. Here, we describe a simple and quantitative in vitro assay using isolated yeast microsomes to measure homotypic ER membrane fusion. In this assay, membrane fusion between ER microsomes is monitored by reconstitution of luciferase activity from split luciferase fragments.

View Article and Find Full Text PDF

Vacuole fusion is driven by SNARE proteins that require activation-or priming-by the AAA+ protein Sec18 (NSF) before they can bring membranes together and trigger the merger of two bilayers into a continuous membrane. Sec18 resides on vacuoles prior to engaging inactive cis-SNARE complexes through its interaction with the regulatory lipid phosphatidic acid (PA). Binding PA causes Sec18 to undergo large conformational changes that keeps it bound to the membrane, thus precluding its interactions with SNAREs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!