1,25-Dihydroxyvitamin D(3) (vitamin D) and transforming growth factor-beta (TGF-beta) regulate diverse biological processes including cell proliferation and differentiation through modulation of the expression of target genes. Members of the Smad family of proteins function as effectors of TGF-beta signaling pathways whereas the vitamin D receptor (VDR) confers vitamin D signaling. We investigated the molecular mechanisms by which TGF-beta and vitamin D signaling pathways interact in the regulation of the human osteocalcin promoter. Synergistic activation of the osteocalcin gene promoter by TGF-beta and vitamin D was observed in transient transfection experiments. However, in contrast to a previous report by Yanagisawa, J., Yanagi, Y., Masuhiro, Y., Suzawa, M., Watanabe, M., Kashiwagi, K., Toriyabe, T., Kawabata, M., Miyazono, K., and Kato, S. (1999) Science, 283, 1317-1321, synergistic activation was not detectable when the osteocalcin vitamin D response element (VDRE) alone was linked to a heterologous promoter. Inclusion of the Smad binding elements (SBEs) with the VDRE in the heterologous promoter restored synergistic activation. Furthermore, this synergy was dependent on the spacing between VDRE and SBEs. The Smad3-Smad4 heterodimer was found to bind in gel shift assay to two distinct DNA segments of the osteocalcin promoter: -1030 to -989 (SBE3) and -418 to -349 (SBE1). Deletion of SBE1, which is proximal to the VDRE, but not the distal SBE3 in this promoter reporter abolished TGF-beta responsiveness and eliminated synergistic co-activation with vitamin D. Thus the molecular mechanism, whereby Smad3 and VDR mediate cross-talk between the TGF-beta and vitamin D signaling pathways, requires both a VDRE and a SBE located in close proximity to the target promoter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M011033200 | DOI Listing |
This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.
View Article and Find Full Text PDFViruses
December 2024
Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA.
Pathogenic viruses trigger or disrupt multiple signaling networks to establish an environment optimized for their own replication and productive infection [...
View Article and Find Full Text PDFViruses
December 2024
Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India.
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, Kaposi's sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis.
View Article and Find Full Text PDFViruses
December 2024
Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.
During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.
View Article and Find Full Text PDFViruses
December 2024
Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA 95817, USA.
Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA gamma herpesvirus. Like other herpesviruses, KSHV establishes a latent infection with limited gene expression, while KSHV occasionally undergoes the lytic replication phase, which produces KSHV progenies and infects neighboring cells. KSHV genome encodes 80+ open reading frames.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!