Evidence for distinct cholesterol domains in fiber cell membranes from cataractous human lenses.

J Biol Chem

Membrane Biophysics Laboratory, Department of Medicine, MCP Hahnemann University School of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania 15212-4772, USA.

Published: April 2001

Previous studies in our laboratory have provided direct evidence for the existence of distinct cholesterol domains within the plasma membranes of human ocular lens fiber cells. The fiber cell plasma membrane is unique in that it contains unusually high concentrations of cholesterol, with cholesterol to phospholipid (C/P) mole ratios ranging from 1 to 4. Since membrane cholesterol content is disturbed in the development of cataracts, it was hypothesized that perturbation of cholesterol domain structure occurs in cataracts. In this study, fiber cell plasma membranes were isolated from both normal (control) and cataractous lenses and assayed for cholesterol and phospholipid. Control and cataractous whole lens membranes had C/P mole ratios of 3.1 and 1.7, respectively. Small angle x-ray diffraction approaches were used to directly examine the structural organization of the cataractous lens plasma membrane versus control. Both normal and cataractous oriented membranes yielded meridional diffraction peaks corresponding to a unit cell periodicity of 34.0 A, consistent with the presence of immiscible cholesterol domains. However, comparison of diffraction patterns indicated that cataractous lens membranes contained more pronounced and better defined cholesterol domains than controls, over a broad range of temperature (5-40 degrees C) and relative humidity (52-92%) levels. In addition, diffraction analyses of the sterol-poor regions of cataractous membranes indicated increased membrane rigidity as compared with control membranes. Modification of the membrane lipid environment, such as by oxidative insult, is believed to be one potential mechanism for the formation of highly resolved cholesterol domains despite significantly reduced cholesterol content. The results of this x-ray diffraction study provide evidence for fundamental changes in the lens fiber cell plasma membrane structure in cataracts, including the presence of more prominent and highly ordered, immiscible cholesterol domains.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M010077200DOI Listing

Publication Analysis

Top Keywords

cholesterol domains
24
fiber cell
16
cholesterol
12
cell plasma
12
plasma membrane
12
cataractous lens
12
distinct cholesterol
8
membranes
8
plasma membranes
8
lens fiber
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!