Intracellular accumulation of anthracycline derivatives was measured in a human embryonic kidney cell line (HEK) and a resistant subline (HEK/multidrug resistance protein (MRP1)) overexpressing MRP1 at the plasma membrane surface. Two compounds (daunorubicin and doxorubicin) were rejected outside the multidrug-resistant cells. On the contrary, three compounds (4'-deoxy-4'-iodo-doxorubicin, 4-demethoxy-daunorubicin and 3'-(3-methoxymorpholino)doxorubicin) accumulated equally within sensitive HEK cells and resistant HEK/MRP1 cells. Our main objective here was to characterize the MRP1 conformational changes mediated by the binding of these anthracycline derivatives and to determine whether these conformational changes are related to MRP1-mediated drug transport. MRP1 was reconstituted in lipid vesicles as previously described [Manciu, L., Chang, X.B., Riordan, J.R. and Ruysschaert, J.-M. (2000) Biochemistry 39, 13026-13033]. The reconstituted protein was shown to conserve its ATPase and drug transport activity. Acrylamide quenching of Trp fluorescence was used to monitor drug-dependent conformational changes. Binding of drugs (4-demethoxy-daunorubicin and 3'-(3-methoxymorpholino)doxorubicin) which accumulate in resistant cells immobilizes MRP1 in a conformational state that is insensitive to ATP binding whereas drugs rejected outside the resistant cells (daunorubicin, doxorubicin) favor a conformational change which may be a required step in the transport process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-5793(01)02270-0 | DOI Listing |
Nucleic Acids Res
January 2025
Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States.
The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states.
View Article and Find Full Text PDFLangmuir
January 2025
Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science (IISc), Bangalore 560012, India.
The enduring pathogenicity of can be attributed to its lipid-rich cell wall, with mycolic acids (MAs) being a significant constituent. Different MAs' fluidity and structural adaptability within the bacterial cell envelope significantly influence their physicochemical properties, operational capabilities, and pathogenic potential. Therefore, an accurate conformational representation of various MAs in aqueous media can provide insights into their potential role within the intricate structure of the bacterial cell wall.
View Article and Find Full Text PDFRSC Adv
January 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 201899 China.
Employing electron paramagnetic resonance (EPR) and excitation and photoluminescence (PL) spectra, changes of the local structure of Gd ions were investigated for the CaF crystals containing 0.00015, 0.17, 1.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
The pore-forming enterotoxin (CPE), a common cause of foodborne diseases, facilitates Ca influx in enterocytes, leading to cell damage. Upon binding to certain claudins (e.g.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan.
V-shaped polyaromatic amphiphiles (s) form micelle-like nonbonded self-assemblies in aqueous solution and feature prominent properties of encapsulation and solubilization for various types of hydrophobic molecules. To understand microscopic molecular characteristics underlying the wide capability of solubilization, the atomic-level molecular structures of the self-assemblies of s were investigated by microsecond molecular dynamics (MD) simulations. The MD simulations showed that s spontaneously formed quasi-stable self-assemblies, in close agreement with experimental observations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!