As transmembrane, Ca2+-dependent cell-cell adhesion molecules, cadherins play a central role in tissue morphogenesis and homeostasis. Stable adhesion is dependent on interactions of the cytoplasmic domain of the cadherins with a group of intracellular proteins, the catenins. In the present study, we have detected the expression of alpha-, beta-, and gamma-catenins in human osteoblasts, which assemble with cadherins to form two distinct complexes containing cadherin and alpha-catenin, with either beta- or gamma-catenin. In osteoblasts undergoing apoptosis, proteolytic cleavage of N-cadherin and beta- and gamma- catenins but not alpha-catenin was associated with the activation of caspase-3 and prevented by the caspase inhibitor Z-VAD-fmk. The pattern of cadherin/catenin cleavage detected in apoptotic osteoblasts was reproduced in vitro by recombinant caspase-3. The presence of a 90-kDa extracellular domain fragment of N-cadherin in conditioned medium from apoptotic cells indicates that additional extracellular or membrane-associated proteases also are activated. Disruption of N-cadherin-mediated cell-cell adhesion with function-blocking antibodies induced osteoblast apoptosis, activation of caspases, and cleavage of beta-catenin. These findings provide compelling evidence that N-cadherin-mediated cell-cell adhesion promotes osteoblast survival and suggest that the underlying mechanism may involve activation of beta-catenin signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1359/jbmr.2001.16.3.466 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!