We have isolated a cytotoxic T lymphocyte (CTL) clone, Heu161, that reacts specifically with the human autologous lung carcinoma cell line IGR-Heu. We first demonstrated that IGR-Heu lacked Fas-receptor expression and was resistant to CD95-induced apoptosis. To further elucidate the role of Fas in tumor immune surveillance, we have stably transfected IGR-Heu with a Fas-expression vector and isolated CD95-sensitive and -resistant clones. Our data indicated that the resistance of 2 selected Fas-transfected clones to CD95-mediated lysis correlated with down-regulation of caspase-8 or its lack of cleavage and subsequent activation. All Fas transfectants, either sensitive or resistant to anti-Fas agonistic antibody, were as efficiently lysed by the CTL clone as the parental cell line. In addition, neither anti-Fas-blocking antibody nor Fas-Fc molecule inhibited T-cell lysis of Fas-sensitive tumor clone. This cytotoxicity was extracellular Ca(2+)-dependent and abolished in the presence of EGTA, indicating that it was mainly granzyme-mediated. Interestingly, although the caspase inhibitor z-VAD-fmk had no effect on tumor-cell lysis, it efficiently blocked target DNA damage triggered by autologous CTLs via the granule exocytosis pathway, indicating that the latter event was caspase-dependent. The present results suggest that lung carcinoma-specific CTLs use mainly a granule exocytosis-dependent pathway to lyse autologous target cells and that these effectors are able to circumvent alteration of the Fas-triggered intracellular signalling pathway via activation of a caspase-independent cytoplasmic death mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1097-0215(200002)9999:9999<::aid-ijc1132>3.0.co;2-v | DOI Listing |
Biol Direct
January 2025
Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China.
Background: Regeneration is the preferred approach to restore the structure and function after tissue damage. Rapid proliferation of cells over the site of damage is integral to the process of regeneration. However, even subtle mutations in proliferating cells may cause detrimental effects by eliciting abnormal differentiation.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Nephrology, National Clinical Key Specialty Construction Program, Institute of Nephrology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
Autophagic activation in immune cells, gut microbiota dysbiosis, and metabolic abnormalities have been reported separately as characteristics of systemic lupus erythematosus (SLE). Elucidating the crosstalk among the immune system, commensal microbiota, and metabolites is crucial to understanding the pathogenesis of autoimmune diseases. Emerging evidence shows that basophil activation plays a critical role in the pathogenesis of SLE; however, the underlying mechanisms remain largely unknown.
View Article and Find Full Text PDFCell Death Dis
January 2025
Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auvera Haus Grombühlstraße 12, 97080, Würzburg, Germany.
This study suggests a modified model of TNFR1-induced complex I-mediated NFκB signaling. Evaluation of a panel of five tumor cell lines (HCT116-PIK3CAmut, SK-MEL-23, HeLa-RIPK3, HT29, D10) with TRAF2 knockout revealed in two cell lines (HT29, HeLa-RIPK3) a sensitizing effect for death receptor-induced necroptosis and in one cell line (D10) a mild sensitization for TNFR1-induced apoptosis. TRAF2 deficiency inhibited death receptor-induced classical NFκB-mediated production of IL-8 only in a subset of cell lines and only partly.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons.
View Article and Find Full Text PDFJ Hum Reprod Sci
December 2024
Department of Obstetrics and Gynaecology, Reproductive Health Research Centre, Alzahra Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
Background: An increasing number of studies have demonstrated that excessive proliferation and apoptosis play a pivotal role in the development of endometriosis.
Aim: The aim of the study was to evaluate the expression of long non-coding RNA (lncRNA) FAS-AS1, FAS, soluble Fas (sFas) and caspase-3 in patients with different stages of endometriosis.
Setting And Design: The design of the study was a cross-sectional study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!