Red blood cell involvement in fetal/neonatal hypoxia.

Biol Neonate

Institute of Preventive Pediatrics and Neonatology, University of Siena, Italy.

Published: July 2001

Free radical release plays an important role in the development of brain injury following hypoxic-ischemic encephalopathy. It causes endothelial cell damage and anomalies in NMDA receptors, synaptosome structure and astrocyte function. Mitochondrial dysfunctions caused by asphyxia, reperfusion after ischemia, arachidonic acid cascade, catecholamine metabolism and phagocyte activation are known sources of reactive oxygen species, particularly the superoxide anion (O2(-)). O2(-) mainly induces peroxidation by the Fenton/Haber Weiss reaction or via iron-oxygen complexes. Since both reactions require reactive heavy metals, non-protein-bound iron (NPBI) is essential for the induction of lipid peroxidation. Experimental studies have demonstrated the neurotoxicity of iron in ischemia-reperfusion. Normal axonal transport of brain iron is also reported to be disrupted in hypoxia-ischemia, leading to a buildup of iron in the white matter. The free iron content of erythrocytes (ICRBC) is considered a marker of oxidative stress. Free iron release is accompanied by the oxidation of membrane proteins and the appearance of senescent antigen, as measured by autologous IgG binding. Our preliminary results suggest a significant positive correlation between plasma free iron and the number of nucleated red cells in cord blood, currently considered a reliable index of lasting intrauterine asphyxia but also possessing a high predictive value for poor neurodevelopmental outcome. The rate of erythropoiesis and the entity of ICRBC are related to the degree of asphyxia and the probability of neurological impairment. Since even an increase in NPBI during asphyxia is related to a poor outcome, iron released by red cells could possibly also contribute to NPBI levels.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000047093DOI Listing

Publication Analysis

Top Keywords

free iron
12
iron
8
red cells
8
red blood
4
blood cell
4
cell involvement
4
involvement fetal/neonatal
4
fetal/neonatal hypoxia
4
free
4
hypoxia free
4

Similar Publications

Linear-no-threshold concept for evaluating arsenic toxicity in rice grains.

J Hazard Mater

December 2024

Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085,  India; Homi Bhabha National Institute, Mumbai 400094, India. Electronic address:

Arsenic (As) is a potent carcinogen that enters the human food chain mainly through rice, which is one of the staple food crops worldwide. During February 2022, a market survey was conducted and 500 samples of rice grains were collected across 41 different locations in Mumbai/Navi-Mumbai. On the basis of grain As-accumulation, samples were grouped into three categories including low- (0-30 ng g DW), medium- (31-70 ng g DW) or high- (>71 ng g DW).

View Article and Find Full Text PDF

Revealing the Potential-Dependent Rate-Determining Step of Oxygen Reduction Reaction on Single-Atom Catalysts.

J Am Chem Soc

January 2025

Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.

Single-atom catalysts (SACs) have attracted widespread attention due to their potential to replace platinum-based catalysts in achieving efficient oxygen reduction reaction (ORR), yet the rational optimization of SACs remains challenging due to their elusive reaction mechanisms. Herein, by employing ab initio molecular dynamics simulations and a thermodynamic integration method, we have constructed the potential-dependent free energetics of ORR on a single iron atom catalyst dispersed on nitrogen-doped graphene (Fe-N/C) and further integrated these parameters into a microkinetic model. We demonstrate that the rate-determining step (RDS) of the ORR on SACs is potential-dependent rather than invariant within the operative potential range.

View Article and Find Full Text PDF

Introduction: Invasive Stratified Mucin-producing Carcinoma (ISMC) of the cervix is a newly named cervical adenocarcinoma associated with Human Papilloma virus (HPV). Due to its relative rarity, clinical data, pathological features, and molecular characteristics of ISMC are still under exploration. This study aims to retrospectively analyze the clinical data and pathological features of ISMC patients, summarizing the clinical and pathological morphological characteristics of ISMC.

View Article and Find Full Text PDF

Magnetic chromatography was exploited to fractionate suspensions of magnetoliposomes (SML: lumen-free lipid-encapsulated clusters of multiple magnetic iron-oxide nanoparticles) improving their colloidal properties and relaxivity (magnetic resonance image contrast capability). Fractionation (i) removed sub-populations that do not contribute to the MRI response, and thus (ii) enabled evaluation of the size-dependence of relaxivity for the MRI-active part, which was surprisingly weak in the 55-90 nm range. MC was therefore implemented for processing multiple PEGylated SML types having average sizes ranging from 85 to 105 nm, which were then shown to have strongly size-dependent uptake in an pancreatic cancer model.

View Article and Find Full Text PDF

Yeast frataxin (Yfh1) is a small natural protein from yeast that has the unusual property of undergoing cold denaturation at temperatures above the freezing point of water when under conditions of low ionic strength. This peculiarity, together with remarkable resilience, allows the determination, for the whole protein as well as for individual residues, of the stability curve, that is the temperature dependence of the free energy difference between the unfolded and folded forms. The ease of measuring stability curves without the need to add denaturants or introduce destabilizing mutations makes this protein an ideal 'tool' for investigating the influence of many environmental factors on protein stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!