Inhalation of tobacco dust is responsible for elevated genotoxicity and pulmonary ailments in workers engaged in processing tobacco for the manufacture of bidis, the Indian version of cigarettes. Tracheal tissue being the major site of interaction with tobacco dust, the effects of different concentrations of an aqueous extract of bidi tobacco (ATE) on the growth of a hamster tracheal epithelial cell line (HTE) were investigated. Colony forming efficiency assay revealed that ATE was cytotoxic only at the highest concentration of 5.0 mg/ml. In cultures treated with 1.25 mg/ml ATE, the cell doubling time and growth rate were similar to that of the controls, while a significant increase in cell doubling time (29.4+/-0.3 h vs 14.0+/-3.75 h, P<0.001) was observed at 2.5 mg/ml ATE concentration. Exposure of HTE cells to the non-toxic ATE concentration of 2.5 mg/ml was found to stimulate ornithine decarboxylase (ODC) activity, incorporation of [3H] methyl thymidine into DNA and increase in the S phase fraction was seen by flow cytometry. However, a 56% reduction in the growth rate of cultures treated with 2.5 mg/ml ATE was related to the prolongation of the traverse of cells through S phase. ATE-induced growth suppression was reversed when cultures were grown in ATE-free medium or upon repeated exposure to ATE. The findings suggest that increased tracheal cell proliferation induced by chronic inhalation of tobacco dust may contribute to the development of pulmonary disorders and possibly neoplasia in exposed individuals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-4274(00)00275-7 | DOI Listing |
Front Chem
January 2025
NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt.
Background: Monkeypox (Mpox) is a re-emerging zoonotic disease with limited therapeutic options, necessitating the exploration of novel antiviral agents. (turmeric) is a widely used medicinal plant known for its antioxidant and anti-inflammatory properties, primarily attributed to its bioactive curcuminoids.
Aim: This study aimed to evaluate the therapeutic potential of aqueous extract (CAE) against monkeypox through phytochemical characterization, biological assays, and computational analyses.
Scientifica (Cairo)
December 2024
Department of Therapeutics, Natural Products Unit, Wilkins Hospital Block C, Cnr J. Tongogara and R. Tangwena, The African Institute of Biomedical Research and Technology (AiBST), Harare, Zimbabwe.
The global problem of infectious and deadly diseases caused by microbes such as candida and mycobacteria presents major scientific and medical challenges. Antimicrobial drug resistance is a rapidly growing problem with potentially devastating consequences. Various pathogens can cause skin infections, such as bacteria, fungi, and parasites.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Environmental and Biochemical Sciences, James Hutton Institute, Dundee, Scotland, UK.
Profiling of secondary metabolites within Fragaria sp. (strawberry), Rubus sp. (raspberries and blackberries), and Ribes sp.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Syngenta Ltd, Jealott's Hill International Research Centre, Warfield, Bracknell, RG42 6EY, UK.
Brazilian soils have distinctive characteristics to European and North American soils which are typically used to investigate pesticide fate. This study aimed to compare soil-water partition coefficient (K), reversibility of adsorption and degradation half-life (DT) of 5 pesticides covering a wide range of physico-chemical properties in contrasting Brazilian soils (Argissolo, Gleissolo, Latossolo and Neossolo) and a temperate (UK) alfisol soil, and to study their relationship with soil OM, clay and expandable clay content, CEC and pH. In addition, we used a novel laboratory test to evaluate sorption reversibility, the 3-Phase Assay (3PA).
View Article and Find Full Text PDFAchieving the smallest crystallite/particle size of zinc oxide nanoparticles (ZnO NPs) reported to date, measuring 5.2/12.41 nm with () leaf extract, this study introduces a facile green synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!