Potentiation of the cytotoxic activity of 5-fluorouracil (FUra) by folinic acid (5-HCO-H4folate) is due to elevation of the methylene tetrahydrofolate (CH2-H4folate) level, which increases the stability of the ternary complex of thymidylate synthase (TS), fluorodeoxyuridine monophosphate, and CH2-H4folate that inactivates the TS. Methionine deprivation results in the production of tetrahydrofolate (H4folate) and, subsequently, CH2-H4folate from methyl tetrahydrofolate, as a consequence of the induction of methionine synthesis. We hypothesized that the efficacy of FUra could be augmented by the combination of high-concentration 5-HCO-H4folate and recombinant methioninase (rMETase), a methionine-cleaving enzyme. Studies in vitro were performed with the cell line CCRF-CEM. Cytotoxic synergism of FUra + rMETase and FUra + 5-HCO-H4folate + rMETase was demonstrated with the combination index throughout a broad concentration range of FUra and rMETase. A subcytotoxic concentration of rMETase reduced the IC50 of FUra by a factor of 3.6, and by a factor of 7.5, in the absence and in the presence of 5-HCO-H4folate, respectively. 5-HCO-H4folate increased the intracellular concentrations of CH2-H4folate and H4folate from their baseline levels. Concentrations of folates were not changed by exposure to rMETase. Levels of free TS in cells treated with FUra + 5-HCO-H4folate and with FUra + rMETase were lower than those in cells exposed to FUra alone. The decrease of TS was still more pronounced in cells treated with FUra + 5-HCO-H4folate + rMETase. The synergism described in this study will be a basis for further exploration of combinations of fluoropyrimidines, folates, and rMETase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-2952(01)00560-3 | DOI Listing |
Cancer Res
August 2002
Hematology and Oncology Department and Institut du Cancer et d'Immunogénétique, Hospital Paul-Brousse, 94804 Villejuif, France.
Methionine depletion in the human cell line CCRF-CEM through the action of recombinant methioninase (rMETase), a methionine-cleaving enzyme, was previously demonstrated to produce a strong cytotoxic synergistic effect with fluorouracil (FUra) throughout a broad range of concentrations of FUra and rMETase, including subcytotoxic levels of rMETase. Potentiation was associated with a decrease in free thymidylate synthase from preexisting levels. To further investigate the action of rMETase on CCRF-CEM cells, in the present study we explored the effects of rMETase as a single agent on DNA methylation levels and DNA synthesis, which may be changed as a result of deprivation of methionine.
View Article and Find Full Text PDFBiochem Pharmacol
April 2001
Hematology and Oncology Department, Hospital Paul-Brousse, 12-14 Avenue Paul Vaillant-Couturier, F-94804, Villejuif, France.
Potentiation of the cytotoxic activity of 5-fluorouracil (FUra) by folinic acid (5-HCO-H4folate) is due to elevation of the methylene tetrahydrofolate (CH2-H4folate) level, which increases the stability of the ternary complex of thymidylate synthase (TS), fluorodeoxyuridine monophosphate, and CH2-H4folate that inactivates the TS. Methionine deprivation results in the production of tetrahydrofolate (H4folate) and, subsequently, CH2-H4folate from methyl tetrahydrofolate, as a consequence of the induction of methionine synthesis. We hypothesized that the efficacy of FUra could be augmented by the combination of high-concentration 5-HCO-H4folate and recombinant methioninase (rMETase), a methionine-cleaving enzyme.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!