Over the past decade, high throughput screening (HTS) has become the focal point for discovery programs within the pharmaceutical industry. The role of this discipline has been and remains the rapid and efficient identification of lead chemical matter within chemical libraries for therapeutics development. Recent advances in molecular and computational biology, i.e., genomic sequencing and bioinformatics, have resulted in the announcement of publication of the first draft of the human genome. While much work remains before a complete and accurate genomic map will be available, there can be no doubt that the number of potential therapeutic intervention points will increase dramatically, thereby increasing the workload of early discovery groups. One current drug discovery paradigm integrates genomics, protein biosciences and HTS in establishing what the authors refer to as the "gene-to-screen" process. Adoption of the "gene-to-screen" paradigm results in a dramatic increase in the efficiency of the process of converting a novel gene coding for a putative enzymatic or receptor function into a robust and pharmacologically relevant high throughput screen. This article details aspects of the identification of lead chemical matter from HTS. Topics discussed include portfolio composition (molecular targets amenable to small molecule drug discovery), screening file content, assay formats and plating densities, and the impact of instrumentation on the ability of HTS to identify lead chemical matter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1056-8719(00)00108-8 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6.
Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.
View Article and Find Full Text PDFAnimal Model Exp Med
January 2025
Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh.
The increasing incidence of neurodegenerative diseases (NDs) and the constraints of existing treatment methods have spurred a keen interest in investigating alternative therapies. Medicinal plants, renowned for their long-standing use in traditional medicine, offer a hopeful avenue for discovering new neuroprotective agents. This study emphasizes the potential neuroprotective characteristics of edible fruit plants in Bangladesh, specifically focusing on their traditional folk medicine uses for neurological disorders.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Oral Biology Department, Faculty of Dentistry, Galala Plateau, Galala University, 15888), Attaka, Suez Governorate, Egypt.
Leukemia covers a broad category of cancer malignancies that specifically affect bone marrow and blood cells. While different kinds of leukemia have been identified, effective treatments are still lacking for most forms, and even those treatments considered effective can lead to relapses. MicroRNAs, or miRNAs, are short endogenous non-coding single-stranded RNAs that help control the epigenetics of gene expression.
View Article and Find Full Text PDFMol Pharm
January 2025
Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.
Numerous diseases, such as diabetic retinopathy and age-related macular degeneration, can lead to retinal neovascularization, which can seriously impair the visual function and potentially result in blindness. The presence of the blood-retina barrier makes it challenging for ocularly administered drugs to penetrate physiological barriers and reach the ocular posterior segments, including the retina and choroid. Herein, we developed an innovative bifunctional peptide, Tat-C-RP7, which exhibits excellent penetration capabilities and antiangiogenic properties aimed at treating retinal neovascularization diseases.
View Article and Find Full Text PDFSmall
January 2025
Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China.
Developing efficient, multifunctional electrodes for energy storage and conversion devices is crucial. Herein, lattice strains are reported in the β-phase polymorph of CoMoO within CoMoO@CoO heterostructure via phosphorus doping (P-CoMoO@CoO) and used as a high-performance trifunctional electrode for supercapacitors (SCs), hydrogen evolution reaction (HER), and oxygen evolution reaction (OER) in alkaline electrolytes. A tensile strain of +2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!