Progress in predicting human ADME parameters in silico.

J Pharmacol Toxicol Methods

Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Drop Code 0730, Indianapolis, IN 46285, USA.

Published: May 2001

Understanding the development of a scientific approach is a valuable exercise in gauging the potential directions the process could take in the future. The relatively short history of applying computational methods to absorption, distribution, metabolism and excretion (ADME) can be split into defined periods. The first began in the 1960s and continued through the 1970s with the work of Corwin Hansch et al. Their models utilized small sets of in vivo ADME data. The second era from the 1980s through 1990s witnessed the widespread incorporation of in vitro approaches as surrogates of in vivo ADME studies. These approaches fostered the initiation and increase in interpretable computational ADME models available in the literature. The third era is the present were there are many literature data sets derived from in vitro data for absorption, drug-drug interactions (DDI), drug transporters and efflux pumps [P-glycoprotein (P-gp), MRP], intrinsic clearance and brain penetration, which can theoretically be used to predict the situation in vivo in humans. Combinatorial synthesis, high throughput screening and computational approaches have emerged as a result of continual pressure on pharmaceutical companies to accelerate drug discovery while decreasing drug development costs. The goal has become to reduce the drop-out rate of drug candidates in the latter, most expensive stages of drug development. This is accomplished by increasing the failure rate of candidate compounds in the preclinical stages and increasing the speed of nomination of likely clinical candidates. The industry now understands the reasons for clinical failure other than efficacy are mainly related to pharmacokinetics and toxicity. The late 1990s saw significant company investment in ADME and drug safety departments to assess properties such as metabolic stability, cytochrome P-450 inhibition, absorption and genotoxicity earlier in the drug discovery paradigm. The next logical step in this process is the evaluation of higher throughput data to determine if computational (in silico) models can be constructed and validated from it. Such models would allow an exponential increase in the number of compounds screened virtually for ADME parameters. A number of researchers have started to utilize in silico, in vitro and in vivo approaches in parallel to address intestinal permeability and cytochrome P-450-mediated DDI. This review will assess how computational approaches for ADME parameters have evolved and how they are likely to progress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1056-8719(00)00109-xDOI Listing

Publication Analysis

Top Keywords

adme parameters
12
adme
8
vivo adme
8
computational approaches
8
drug discovery
8
drug development
8
drug
7
computational
5
approaches
5
progress predicting
4

Similar Publications

Background: Anti-obesity medications are recommended for patients who do not achieve and maintain weight loss despite lifestyle interventions. S-309309 is a novel oral inhibitor of monoacylglycerol O-acyltransferase 2 being developed as a treatment for obesity.

Objective: The objective of the study was to investigate the safety, clinical pharmacology, pharmacokinetics and pharmacodynamic biomarker of S-309309.

View Article and Find Full Text PDF

Covariate Model Selection Approaches for Population Pharmacokinetics: A Systematic Review of Existing Methods, From SCM to AI.

CPT Pharmacometrics Syst Pharmacol

January 2025

Pharmacokinetics Dynamics and Metabolism/Translational Medicine and Early Development, Sanofi R&D Montpellier, Montpellier, France.

A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling methods, focusing on assessing the existing knowledge on their performances. For each method of each article included in this review, evaluation setting, performance metrics along with their associated values, and relative computational times were reported when available.

View Article and Find Full Text PDF

Study on the absorption characteristics of euscaphic acid and tiliroside in fruits of Retz.

PeerJ

January 2025

Chinese University of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China.

The fruits of Retz. (FRL) have a long history of medicinal use, known for their rich composition of flavonoids, polyphenols, amino acids, sugars, and other bioactive compounds. FRL exhibits pharmacological effects such as antioxidant, antiviral, antibacterial, and antitumor activities, making it a valuable resource with significant development potential in both the food and pharmaceutical industries.

View Article and Find Full Text PDF

BuShao Tiaozhi Capsule (BSTZC), a novel drug in China, has been used to treat hyperlipidemia (HLP) in clinical practice for many years. Despite our previous studies suggesting that BSTZC can treat HLP, there is a lack of a rapid and systematic method to explore its active components. Therefore, in this study, we aimed to investigate the active components and mechanisms of BSTZC in treating HLP by integrating serum pharmacology, pharmacokinetics, network analysis, and experimental validation.

View Article and Find Full Text PDF

Cortical Acetylcholine Response to Deep Brain Stimulation of the Basal Forebrain in Mice.

J Neurophysiol

January 2025

Dept of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.

Deep brain stimulation (DBS) using electrical stimulation of neuronal tissue in the basal forebrain to enhance release of the neurotransmitter acetylcholine is under consideration to improve executive function in patients with dementia. While some small studies indicate a positive response in the clinical setting, the relationship between DBS and acetylcholine pharmacokinetics is incompletely understood. We examined the cortical acetylcholine response to different stimulation parameters of the basal forebrain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!