Puromycin aminonucleoside (PAN)-induced nephrosis is a well-described model of human idiopathic nephrotic syndrome, but the mechanism of PAN's effect is not completely understood. Because PAN injection into rats results in retraction of glomerular epithelial cell foot processes and glomerular epithelial cell detachment, it was hypothesized that PAN might alter the contacts between these cells and the glomerular basement membrane. The major integrin expressed by glomerular epithelial cells is alpha3beta1, which mediates attachment of these cells to extracellular matrix proteins including type IV collagen. T-SV 40 immortalized human glomerular epithelial cells were used to study PAN's effects on alpha3beta1 expression, as well as that of podocalyxin and the slit diaphragm component ZO-1. Glomerular epithelial cells were seeded into plastic flasks and allowed to attach and proliferate for 48 h. The cells were then incubated for another 48 h in media containing 0, 0.5, or 5.0 microg/ml PAN. PAN exposure resulted in dose-dependent decreases in alpha3 and beta1 expression, both at the protein level and at the mRNA level. This was accompanied by a significant decrease in the adhesion of glomerular epithelial cells to type IV collagen. PAN did not affect ZO-1 protein expression. Treatment with PAN increased the expression of podocalyxin at the protein and mRNA levels. Reduced glomerular epithelial cell expression of alpha3beta1 integrins and impaired adhesion to type IV collagen may contribute to the glomerular epithelial cell detachment from glomerular basement membrane seen in the PAN nephrosis model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1681/ASN.V124758 | DOI Listing |
Curr Med Chem
January 2025
Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
Background: Hyperuricemia (HUA) is a condition characterized by excessive uric acid production and/or inadequate uric acid excretion due to abnormal purine metabolism in the human body. Uric acid deposits resulting from HUA can lead to complications such as renal damage. Currently, drugs used to treat HUA lack specificity and often come with specific toxic side effects.
View Article and Find Full Text PDFClin Nephrol Case Stud
December 2024
Nephrology Center and the Okinaka Memorial Institute for Medical Research.
A 47-year-old woman with a 12-year history of anemia and high C-reactive protein (CRP) levels was admitted to our hospital with worsening fatigue and night sweats. She had high levels of immunoglobulin G (IgG; 4182 mg/dL), IgA (630.6 mg/dL), and CRP (7.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
December 2024
Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, 650101, China.
Objective: This study aims to explore the therapeutic potential of mesenchymal stem cells (MSC) in treating diabetic nephropathy (DN) by investigating their effect on IL-11 modulation in a mouse model.
Methods: The effects of MSC therapy on DN were examined both in vivo and in vitro. Sixty adult male C57BL/6 mice were divided into the streptozotocin (STZ) diabetes (T1D) and the high-fat diet diabetes (T2D) models, with both groups receiving MSC treatment or saline for 4 or 8 weeks.
Biochem Biophys Res Commun
January 2025
Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China. Electronic address:
FEBS Lett
December 2024
Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRI, National Institutes of Health, Bethesda, MD, USA.
Hermansky-Pudlak syndrome type 1 (HPS-1) is a rare, autosomal recessive disorder caused by defects in the biogenesis of lysosome-related organelles complex-3 (BLOC-3). Impaired kidney function is among its clinical manifestations. To investigate HPS-1 renal involvement, we employed 1D-gel-LC-MS/MS and compared the protein composition of urinary extracellular vesicles (uEVs) from HPS-1 patients to normal control individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!