The C termini of G protein alpha subunits are critical for binding to their cognate receptors, and peptides corresponding to the C terminus can serve as competitive inhibitors of G protein-coupled receptor-G protein interactions. This interface is quite specific as a single amino acid difference annuls the ability of a G alpha(i) peptide to bind the A(1) adenosine receptor (Gilchrist, A., Mazzoni, M., Dineen, B., Dice, A., Linden, J., Dunwiddie, T., and Hamm, H. E. (1998 ) J. Biol. Chem. 273, 14912--14919). Recently, we demonstrated that a plasmid minigene vector encoding the C-terminal sequence of G alpha(i) could specifically inhibit downstream responses to agonist stimulation of the muscarinic M(2) receptor (Gilchrist, A., Bunemann, M., Li, A., Hosey, M. M., and H. E. Hamm (1999) J. Biol. Chem. 274, 6610--6616). To selectively antagonize G protein signal transduction events and determine which G protein underlies a given thrombin-induced response, we generated minigene vectors that encode the C-terminal sequence for each family of G alpha subunits. Minigene vectors expressing G alpha C-terminal peptides (G alpha(i), G alpha(q), G alpha(12), and G alpha(13)) or the control minigene vector, which expresses the G alpha(i) peptide in random order (G(iR)), were systematically introduced into a human microvascular endothelial cell line. The C-terminal peptides serve as competitive inhibitors presumably by blocking the site on the G protein-coupled receptor that normally binds the G protein. Our results not only confirm that each G protein can control certain signaling events, they emphasize the specificity of the G protein-coupled receptor-G protein interface. In addition, the C-terminal G alpha minigenes appear to be a powerful tool for dissecting out the G protein that mediates a given physiological function following thrombin activation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M100914200DOI Listing

Publication Analysis

Top Keywords

c-terminal peptides
12
alpha minigenes
8
peptides serve
8
protein
8
alpha subunits
8
serve competitive
8
competitive inhibitors
8
protein-coupled receptor-g
8
receptor-g protein
8
alphai peptide
8

Similar Publications

Flexible Tail of Antimicrobial Peptide PGLa Facilitates Water Pore Formation in Membranes.

J Phys Chem B

January 2025

Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China.

PGLa, an antimicrobial peptide (AMP), primarily exerts its antibacterial effects by disrupting bacterial cell membrane integrity. Previous theoretical studies mainly focused on the binding mechanism of PGLa with membranes, while the mechanism of water pore formation induced by PGLa peptides, especially the role of structural flexibility in the process, remains unclear. In this study, using all-atom simulations, we investigated the entire process of membrane deformation caused by the interaction of PGLa with an anionic cell membrane composed of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG).

View Article and Find Full Text PDF

Chemical tools to define and manipulate interferon-inducible Ubl protease USP18.

Nat Commun

January 2025

Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.

Ubiquitin-specific protease 18 (USP18) is a multifunctional cysteine protease primarily responsible for deconjugating the interferon-inducible ubiquitin-like modifier ISG15 from protein substrates. Here, we report the design and synthesis of activity-based probes (ABPs) that incorporate unnatural amino acids into the C-terminal tail of ISG15, enabling the selective detection of USP18 activity over other ISG15 cross-reactive deubiquitinases (DUBs) such as USP5 and USP14. Combined with a ubiquitin-based DUB ABP, the USP18 ABP is employed in a chemoproteomics screening platform to identify and assess inhibitors of DUBs including USP18.

View Article and Find Full Text PDF

Structure and Function Analysis of Microcystin Transport Protein MlrD.

Biochimie

January 2025

School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China. Electronic address:

Microorganisms play a crucial role in the degradation of microcystins (MCs), with most MC-degrading bacteria utilizing the mlr gene cluster (mlrABCD) mechanism. While previous studies have advanced our understanding of the structure, function, and degradation mechanisms of MlrA, MlrB, and MlrC, research on MlrD remains limited. Consequently, the molecular structure and specific catalytic processes of MlrD are still unclear.

View Article and Find Full Text PDF

Dynamic control of signaling events requires swift regulation of receptors at an active state. By focusing on the Arabidopsis ERECTA (ER) receptor kinase, which perceives peptide ligands to control multiple developmental processes, we report a mechanism preventing inappropriate receptor activity. The ER C-terminal tail (ER_CT) functions as an autoinhibitory domain: Its removal confers higher kinase activity and hyperactivity during inflorescence and stomatal development.

View Article and Find Full Text PDF

We assessed the safety and efficacy of rhFSH-CTP, a novel long-acting FSH agent, in controlled ovarian hyperstimulation for patients undergoing ART. A multi-center, open-label, randomized, positive-control, non-inferiority clinical trial was conducted. The study consisted of a phase III randomized design, with a 1:1 ratio favoring the rhFSH-CTP group over the control group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!