Replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) are accessory proteins essential for processive DNA synthesis in the domain Eucarya. The function of RFC is to load PCNA, a processivity factor of eukaryotic DNA polymerases delta and epsilon, onto primed DNA templates. RFC-like genes, arranged in tandem in the Pyrococcus furiosus genome, were cloned and expressed individually in Escherichia coli cells to determine their roles in DNA synthesis. The P. furiosus RFC (PfuRFC) consists of a small subunit (RFCS) and a large subunit (RFCL). Highly purified RFCS possesses an ATPase activity, which was stimulated up to twofold in the presence of both single-stranded DNA (ssDNA) and P. furiosus PCNA (PfuPCNA). The ATPase activity of PfuRFC itself was as strong as that of RFCS. However, in the presence of PfuPCNA and ssDNA, PfuRFC exhibited a 10-fold increase in ATPase activity under the same conditions. RFCL formed very large complexes by itself and had an extremely weak ATPase activity, which was not stimulated by PfuPCNA and DNA. The PfuRFC stimulated PfuPCNA-dependent DNA synthesis by both polymerase I and polymerase II from P. furiosus. We propose that PfuRFC is required for efficient loading of PfuPCNA and that the role of RFC in processive DNA synthesis is conserved in Archaea and Eucarya.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC95179 | PMC |
http://dx.doi.org/10.1128/JB.183.8.2614-2623.2001 | DOI Listing |
Am J Physiol Lung Cell Mol Physiol
January 2025
Research Institute of the, McGill University Health Centre, Montreal, QC, Canada.
The increasing shift from cannabis smoking to cannabis vaping is largely driven by the perception that vaping to form an aerosol represents a safer alternative to smoking and is a form of consumption appealing to youth. Herein, we compared the chemical composition and receptor-mediated activity of cannabis smoke extract (CaSE) to cannabis vaping extract (CaVE) along with the biological response in human bronchial epithelial cells. Chemical analysis using HPLC and GC/MS revealed that cannabis vaping aerosol contained fewer toxicants than smoke; CaSE and CaVE contained teratogens, carcinogens, and respiratory toxicants.
View Article and Find Full Text PDFChemistry
January 2025
Hefei University of Technology, School of Food and Biological Engineering, Tunxi Road 193, Hefei, CHINA.
Factor XIa (FXIa) is a plasma protease that plays a crucial role in the intrinsic pathway of blood coagulation, making it a promising target for antithrombotic therapy. Circular DNA aptamers, with their dramatically enhanced biological and structural stability, hold great potential as new-generation DNA-based anticoagulants. However, the functional selection and large-scale synthesis of them remains a substantial challenge.
View Article and Find Full Text PDFGenes Cells
January 2025
Department of Genetic Biochemistry, The National Institutes of Biomedical Innovation, Health and Nutrition, Shinjuku-ku, Tokyo, Japan.
Catalytic subunit of DNA polymerase ζ (REV3), involved in translesion-replication is evolutionarily conserved from yeast and plants to higher eukaryotes. However, a large intermediate domain is inserted in REV3 of humans and mice. The domain has "DUF4683" region, which is significantly similar to human neurite extension and migration factor (NEXMIF).
View Article and Find Full Text PDFSci China Life Sci
January 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
Innate immunity serves as a crucial defense mechanism against invading pathogens, yet its negative regulatory network remains under explored. In this study, we identify BEN domain-containing protein 6 (BEND6) as a novel negative regulator of innate immunity through a genome-scale CRISPR knockout screen for host factors essential for viral replication. We show that BEND6 exhibits characteristics of an interferon-stimulated gene (ISG), with its mRNA and protein levels upregulated by RNA virus-induced IFN-β.
View Article and Find Full Text PDFNat Commun
January 2025
University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom.
The Trypanosoma brucei genome is structurally complex. Eleven megabase-sized chromosomes each comprise a transcribed core flanked by silent subtelomeres, housing thousands of Variant Surface Glycoprotein (VSG) genes. Additionally, hundreds of sub-megabase chromosomes contain 177 bp repeats of unknown function, and VSG transcription sites localise to many telomeres.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!