An essential protein translocation pathway in Escherichia coli and Bacillus subtilis involves the signal recognition particle (SRP), of which the 54-kDa homolog (Ffh) is an essential component. In a previous study, we found that a transposon insertion in the ylxM-ffh intergenic region of the designated secretion and acid tolerance (sat) operon of Streptococcus mutans resulted in an acid-sensitive phenotype. In the present study, we further characterized this genomic region in S. mutans after construction of bona fide sat operon mutants and confirmed the role of the SRP pathway in acid resistance. Northern blot and primer extension analyses identified an acid-inducible promoter upstream of ylxM that was responsible for upregulating the coordinate expression of all five genes of the sat operon when cells were grown at acid pH. Two constitutive promoters, one immediately upstream of satD and one just 3' to the acid-inducible promoter, were also identified. Except for Ffh, the functions of the sat operon gene products are unknown. SatC, SatD, and SatE have no homology to proteins with known functions, although YlxM may function as a transcriptional regulator linked to genes encoding SRP pathway proteins. Nonpolar mutations created in each of the five genes of the sat locus resulted in viable mutants. Most striking, however, was the finding that a mutation in ffh did not result in loss of cell viability, as is the case in all other microbial species in which this pathway has been described. This mutant also lacked immunologically detectable Ffh and was severely affected in resistance to acid. Complementation of the mutation resulted in restoration of acid tolerance and reappearance of cytoplasmic Ffh. These data provide evidence that the SRP pathway plays an important role in acid tolerance in S. mutans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC95171 | PMC |
http://dx.doi.org/10.1128/JB.183.8.2543-2552.2001 | DOI Listing |
Genomics
May 2023
National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning 530007, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China. Electronic address:
In the biogeochemical cycle, sulfur oxidation plays a vital role and is typically referred to as the elemental sulfur or reductive sulfide oxidation process. This study aimed to characterize a subtropical mangrove-isolated bacterial strain using biochemical, whole-genome, and transcriptome sequencing analyses to enhance our understanding of sulfur metabolism and biodegradation from a molecular genetic perspective. Strain NM1-A2 was characterized as Gram-positive and found to have a close molecular phylogenetic relationship with Bacillus aryabhattai.
View Article and Find Full Text PDFJ Dairy Sci
February 2023
Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil. Electronic address:
Mammary pathogenic Escherichia coli (MPEC) is one of the most common pathogens associated with clinical mastitis. We analyzed isolates obtained from milk samples of cows with clinical mastitis, collected from 10 farms in Brazil, to verify molecular and phenotypic characteristics. A total of 192 (4.
View Article and Find Full Text PDFJ Antimicrob Chemother
June 2022
School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
Objectives: To examine the causes of antibiotic resistance in the extensively resistant global clone 1 (GC1) Acinetobacter baumannii isolate MRSN 56 recovered at a US military treatment facility.
Methods: MRSN 56 was sequenced using MinION (Oxford Nanopore) and the reads combined with available Illumina MiSeq data using Unicycler. Acquired resistance genes were identified using ABRicate and their environment examined.
Pathogens
October 2021
Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany.
is a commensal resident of the skin and nasal cavities of humans and can cause various infections. Some toxigenic strains can contaminate food matrices and cause foodborne intoxications. The present study aimed to provide relevant information (clonal complex lineages, types, virulence and antimicrobial resistance-associated genes) based on DNA microarray analyses as well as the origins and dissemination of several circulating clones of 60 isolated from food matrices ( = 24), clinical samples ( = 20), and nasal carriers ( = 16) in northern Algeria.
View Article and Find Full Text PDFFront Microbiol
July 2019
Laboratorio de Referencia de E. coli, Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain.
The aim of the present study was to examine the prevalence and determine the molecular characteristics of extended-spectrum β-lactamase-producing (ESBL-EC) causing bacteraemia in a Spanish Hospital over a 12-year period (2000 to 2011). As far as we know, this is the first study which has investigated and compared the serotypes, phylogroups, clonotypes, virotypes, and PFGE profiles of ST131 and non-ST131 clones of bacteraemia ESBL-EC isolates. Of the 2,427 bloodstream isolates, 96 (4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!