Analysis of gene expression and correlation with clinical parameters has the potential to become an important factor in therapeutic decision making. The ability to analyze gene expression in archived tissues, for which clinical followup is already available, will greatly facilitate research in this area. A major obstacle to this approach, however, has been the uncertainty about whether gene expression analyses from routinely archived tissues accurately reflect expression before fixation. In the present study we have optimized the RNA isolation and reverse transcription steps for quantitative reverse transcription-polymerase chain reaction (RT-PCR) on archival material. Using tissue taken directly from the operating room, mRNAs with half-lives from 10 minutes to >8 hours were isolated and reverse transcribed. Subsequent real-time quantitative PCR methodology (TaqMan) on these cDNAs gives a measurement of gene expression in the fixed tissues comparable to that in the fresh tissue. In addition, we simulated routine pathology handling and demonstrate that this method of mRNA quantitation is insensitive to pre-fixation times (time from excision to fixation) of up to 12 hours. Therefore, it should be feasible to analyze gene expression in archived tissues where tissue collection procedures are largely unknown.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1906896 | PMC |
http://dx.doi.org/10.1016/S1525-1578(10)60621-6 | DOI Listing |
Blood
January 2025
IDIBAPS, Barcelona, Spain.
Previous studies have reported that chronic lymphocytic leukemia (CLL) shows a de novo chromatin activation pattern as compared to normal B cells. Here, we explored whether the level of chromatin activation is related to the clinical behavior of CLL. We identified that in some regulatory regions, increased de novo chromatin activation is linked to clinical progression whereas, in other regions, it is associated with an indolent course.
View Article and Find Full Text PDFBioresour Bioprocess
January 2025
Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
Kaempferol and quercetin possess various biological activities, making them valuable in food and medicine. However, their production via traditional methods is often inefficient. This study aims to address this gap by engineering the yeast Yarrowia lipolytica to achieve high yields of these flavonoids.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
Aim: This study aimed to identify the genes associated with the development of lung adenocarcinoma (LUAD) and potential therapeutic targets.
Methods: Differentially expressed genes (DEGs) were identified by self-transcriptome sequencing of tumor tissues and paracancerous tissues resected during surgery and combined with The Cancer Genome Atlas (TCGA) data to screen for the genes associated with LUAD prognosis. The expression was validated at mRNA and protein levels, and the gene knockdown was used to examine the impact and underlying mechanisms on lung cancer cells.
Adv Exp Med Biol
January 2025
Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
Epigenetic regulation in hematopoietic stem cells (HSCs) research has emerged as a transformative molecular approach that enhances understanding of hematopoiesis and hematological disorders. This chapter investigates the intricate epigenetic mechanisms that control HSCs function, including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. It also explores the role of non-coding ribonucleic acid (RNAs) as epigenetic regulators, highlighting how changes in gene expression can occur without alterations to the DNA sequence.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium.
Over the past decade, research on embryo-derived extracellular vesicles (EVs) has unveiled their critical roles in embryonic development and intercellular communication. EVs secreted by embryos are nanoscale lipid bilayer vesicles that carry bioactive cargo, including proteins, lipids, RNAs, and DNAs, reflecting the physiological state of the source cells. These vesicles facilitate paracrine and autocrine signaling, influencing key processes such as cell differentiation, embryo viability, and endometrial receptivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!