Rats were submitted to 10-min cardiac arrest, followed by resuscitation and survival for 1 day, 3 days or 1 week. Five regions of interest (CA1 and CA3 sector of hippocampus, dentate gyrus, reticular nucleus of thalamus and parietal cortex) where studied by light and electron microscopy at each of the survival times, and compared with non-ischemic control rats. Cell counts revealed delayed neuronal loss of about 30% after 3 days in both CA1 and CA3 sectors. Ischemic cell changes consisting of cytoplasmic condensation and nuclear pyknosis appeared in these regions on day 7 and --to a lesser degree-- also affected dentate gyrus, the reticular nucleus of thalamus and cerebral cortex. Ultrastructural alterations were evaluated using an ultrastructural injury catalogue. In all brain regions similar, although quantitatively differently expressed, changes occurred except ribosomal disaggregation, which was restricted to neurons of hippocampal CA1 sector on the first day after cardiac arrest. Progressive alterations included swelling of mitochondria and endoplasmic reticulum, which was most pronounced in CA1 and CA3 sectors of hippocampus, as well as chromatin aggregation and alterations of neuronal volume, which affected mainly the granule cells of dentate gyrus. Other alterations, such as osmiophilic inclusions or the formation of nuclear pore complexes, were transient with a maximum on the first day after cardiac arrest. Treatment with the free-radical scavenger alpha-phenyl-N-tert-butyl nitrone (PBN) suppressed the formation of nuclear pores but otherwise did not markedly change the morphological outcome. In comparison to previous studies of global brain ischemia induced by arterial inflow occlusion of the same duration, the present data demonstrate remarkable preservation of tissue integrity in CA1 sector but also distinct changes in brain regions considered to be resistant to ischemic injury. Morphological alterations of brain after cardiac arrest do not follow the established pattern of selective vulnerability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s004010000260 | DOI Listing |
BMC Emerg Med
January 2025
Department of Emergency Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No.138, Sheng Li Road, Tainan city, 704, Taiwan.
Background: Out-of-hospital cardiac arrest (OHCA) presents significant challenges with low survival rates, emphasizing the need for effective bystander CPR training. In Basic Life Support (BLS) training, the role of instructors is pivotal as they assess and correct learners' cardiopulmonary resuscitation (CPR) techniques to ensure proficiency in life-saving skills. This study evaluates the concordance between CPR quality assessments by Basic Life Support (BLS) instructors and those determined through Quantitative CPR (QCPR) devices, utilizing data from BLS courses conducted at National Cheng Kung University Hospital from October 2017 to April 2018.
View Article and Find Full Text PDFCell Signal
January 2025
School of Basic Medicine, Jiamusi University, Jiamusi 154007, PR China. Electronic address:
The possible involvement of mTOR/p70S6K signaling in mediating Fibrillin-1 expression during the transition from acute kidney injury (AKI) to chronic kidney disease (CKD) after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). A CA/CPR AKI model was established using male C57BL/6 mice aged 8-12 weeks. The expression of Fibrillin-1 and activation of the mTOR/p70S6K signaling pathway in kidney tissues were assessed at different time points.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea.
Recent studies suggested intrathecal vasodilator administration as a therapy to mitigate post-ischemic cerebral hypoperfusion following cardiac arrest. We examined the effects of two commonly used intrathecal vasodilators, sodium nitroprusside (SNP) and nicardipine, on cerebral pial microcirculation, cortical tissue oxygen tension (PctO2), and electrocortical activity in the early post-resuscitation period using a porcine model of cardiac arrest. Thirty pigs were resuscitated after 14 min of untreated cardiac arrest.
View Article and Find Full Text PDFRepositioning a patient from the prone to supine position can delay the initiation of cardiopulmonary resuscitation (CPR). Investigators used high-fidelity simulation to assess the time to initiate chest compressions and the time during which compressions did not occur for supine and prone CPR. Sixty participants completed a knowledge assessment before and after attending an education session and completing two simulations (ie, supine, prone).
View Article and Find Full Text PDFJ Vasc Access
January 2025
RISE@Health, Departamento de Biomedicina - Unidade de Anatomia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
Introduction: Veno-Arterial Extracorporeal Membrane Oxygenation (VA-ECMO) has emerged as a crucial component of critical care medicine, mainly as a lifesaving intervention for patients experiencing refractory cardiac arrest and respiratory failure.
Background: In the past, VA-ECMO decannulation was surgical and often associated with a high rate of periprocedural complications, such as surgical site infection, bleeding, and patient mobilization costs. To reduce the rate of these adverse events, many percutaneous techniques utilizing suture-mediated closing devices have been adopted.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!