On the basis of 1H and 13C NMR spectroscopy studies, the proportion of pyranose and furanose forms of 6-deoxyheptoses in water solution was determined. Water solution of 6-deoxyheptoses contains all possible furanose and pyranose forms (except 6-deoxy-gluco-heptose for which only pyranose was found), although pyranose is dominant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0008-6215(00)00309-8 | DOI Listing |
AAPS PharmSciTech
January 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs.
View Article and Find Full Text PDFSci Rep
January 2025
Hydrobiology Lab, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.
View Article and Find Full Text PDFLangmuir
January 2025
Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
The self-assembly of nanoparticle colloids into large-area monolayers with long-range order is a grand challenge in nanotechnology. Using acoustic energy, i.e.
View Article and Find Full Text PDFAnal Chim Acta
March 2025
Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA. Electronic address:
Background: Perfluorooctane sulfonate (PFOS), one of the most harmful members of the large group of per- and poly-fluoroalkyl substances (PFAS), is notorious for its environmental persistence, bioaccumulation, and toxic effects, raising serious environmental and health concerns. Developing rapid and sensitive methods to detect PFOS in water is critical for effective monitoring and protection against this hazardous chemical.
Results: In this study, we developed rapid and highly sensitive fluorometric sensors (PDI-2+ , PDI-6+ ) for detecting PFOS.
Int J Biol Macromol
January 2025
State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring Road, Chao Yang District, Beijing 100029, China. Electronic address:
A comprehensive study was conducted to determine the effects of water and ethylene glycol (EG) on biomass pretreatment using a binary deep eutectic solvent (DES) containing choline chloride and acetic acid (1ChCl3AC) at a mole ratio of 1:3. Different quantities of water and EG were combined with 1ChCl3AC to pretreat wheat straw, miscanthus, eucalyptus, and sorghum stalk at 130 °C for 6 h. The changes in nanopore structure and surface roughness of wet biomass, as well as biomass crystallinity after 1ChCl3AC-based pretreatment were investigated using XRD and small-angle neutron scattering (SANS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!