Enantioselective sonochemical hydrogenation of alpha,alpha,alpha-trifluoromethyl ketones, namely, 1,1,1-trifluoroacetophenone and 1,1,1-trifluoro-phenylacetone was carried out over various platinum catalysts modified by cinchonidine in different solvents. Both compounds yielded the (R)-alcohol as major product. The reaction rates and the enantiomeric excesses were determined over Pt/C, Pt/SiO2, Pt/K-10 and Pt/Al2O3 catalysts under conventional conditions. Since Pt/Al2O3 exhibited the best catalytic performance the effect of ultrasound on the catalytic activity and enantioselectivity was tested using this catalyst applying different sonochemical pretreatments. These methods included a pretreatment before the reaction in hydrogen and oxygen or both. The ultrasonic irradiation was found to be highly advantageous in the case of trifluoroacetophenone, whereas only moderate changes were observed using trifluoro-phenylacetone. After insonation of the catalyst, the enantioselectivity was considerably improved. Both the aerobic and anaerobic sonochemical pretreatments resulted in significant improvement in optical yield (up to 49% and 17% ee, at room temperature under 10 bar in 1,2-dichlorobenzene). In parallel, the hydrogenation rates increased to a small extent (1.1-1.2-fold increase) after hydrogenative ultrasonic pretreatment, whereas the rates decreased by a factor of 1.5-2 after aerobic insonation. To obtain more insight into the process, the effect of insonation time on the activity and enantioselectivity and actual changes of the catalyst were also studied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1350-4177(98)00043-1 | DOI Listing |
Membranes (Basel)
December 2024
Department of Chemical & Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.
This study addresses the critical challenge of carbon corrosion in proton exchange membrane fuel cells (PEMFCs) by developing hybrid supports that combine the high surface area of carbon black (CB) with the superior crystallinity and graphitic structure of carbon nanofibers (CNFs). Two commercially available CB samples were physically activated and composited with two types of CNFs synthesized via chemical vapor deposition using different carbon sources. The structure, morphology, and crystallinity of the resulting CNF-CB hybrid supports were characterized, and the performances of these hybrid supports in mitigating carbon corrosion and enhancing the PEMFC performance was evaluated through full-cell testing in collaboration with a membrane electrode assembly (MEA) manufacturer (VinaTech, Seoul, Republic, of Korea), adhering to industry-standard fabrication and evaluation procedures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Beijing Institute of Technology, Research Center of Materials Science, School of Materials Science and Engineering, No.5 South Street of Zhongguancun, Haidian District, 100081, Beijing, CHINA.
Copper (Cu)-based catalysts exhibit distinctive performance in the electrochemical CO2 reduction reaction (CO2RR) with complex mechanism and sophisticated types of products. The management of key intermediates *CO and *H is a necessary factor for achieving high product selectivity, but lack of efficient and versatile strategies. Herein, we designed Pt modified Cu catalysts to effectively modulate the competitive coverage of those intermediates.
View Article and Find Full Text PDFACS Nano
January 2025
National Synchrotron Light source II, Brookhaven National Laboratory, Upton, New York 11973, United States.
Directed assembly of abiotic catalysts onto biological redox protein frameworks is of interest as an approach for the synthesis of biohybrid catalysts that combine features of both synthetic and biological materials. In this report, we provide a multiscale characterization of the platinum nanoparticle (NP) hydrogen-evolving catalysts that are assembled by light-driven reductive precipitation of platinum from an aqueous salt solution onto the photosystem I protein (PSI), isolated from cyanobacteria as trimeric PSI. The resulting PSI-NP assemblies were analyzed using a combination of X-ray energy-dispersive spectroscopy (XEDS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), small-angle X-ray scattering (SAXS), and high-energy X-ray scattering with atomic pair distribution function (PDF) analyses.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
Ensuring the stability of electrocatalysts is paramount to the success of electrochemical energy conversion devices. Degradation is a fundamental process involving the release of positively charged metal ions into the electric double layer (EDL) and their subsequent diffusion into the bulk electrolyte. However, despite its vital importance in achieving prolonged electrocatalysis, the underlying causality of catalyst dissolution with the EDL structure remains largely unknown.
View Article and Find Full Text PDFNat Commun
January 2025
ICGM, Univ. Montpellier, CNRS, ENSCM, 34095, Montpellier, France.
The long-term stability of Pt-based catalysts is critical to the reliability of proton exchange membrane fuel cells (PEMFCs), and receives constant attention. However, the current knowledge of Pt oxidation is restricted to unrealistic PEMFC cathode environment or operation, which questions its practical relevance. Herein, Pt oxidation is investigated directly in a PEMFC with stroboscopic operando high energy X-ray scattering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!