Hollow tubular structures of molecular dimensions perform diverse biological functions in nature. Examples include scaffolding and packaging roles played by cytoskeletal microtubules and viral coat proteins, respectively, as well as the chemical transport and screening activities of membrane channels. In the preparation of such tubular assemblies, biological systems make extensive use of self-assembling and self-organizing strategies. Owing to numerous potential applications in areas such as chemistry, biology, and materials science considerable effort has recently been devoted to preparation of artificial nanotubular structures. This article reviews design principles and the preparation of synthetic organic nanotubes, with special emphasis on noncovalent processes such as self-assembly and self-organization.

Download full-text PDF

Source

Publication Analysis

Top Keywords

organic nanotubes
8
self-assembling organic
4
nanotubes hollow
4
hollow tubular
4
tubular structures
4
structures molecular
4
molecular dimensions
4
dimensions perform
4
perform diverse
4
diverse biological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!