Repair of loop mismatches was investigated in wild-type and mismatch binding-defective Chinese hamster ovary (CHO) cells. Loop mismatches were formed in vivo during extrachromosomal recombination between heteroallelic plasmid substrates. Recombination was expected to occur primarily by single-strand annealing (SSA), yielding 12- or 26-base nonpalindromic loop mismatches, and 12-, 26-, or 40-base palindromic loop mismatches. Nonpalindromic loops were repaired efficiently and with bias toward loop loss. In contrast, the 12-base palindromic loop was repaired with bias toward loop retention, indicating that repair bias depends on loop structure. Among the palindromic loops, repair bias was dependent on loop length, with bias shifting from loop retention to loop loss with increasing loop size. For both palindromic and nonpalindromic loops, repair efficiencies and biases were independent of the general (MSH/MLH) mismatch repair pathway. These results are discussed with respect to the maintenance of large nonpalindromic insertions, and of small and large palindromes, in eukaryotic genomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0921-8777(01)00065-9DOI Listing

Publication Analysis

Top Keywords

loop mismatches
20
loop
14
repair bias
12
depends loop
8
loop length
8
palindromic loop
8
nonpalindromic loops
8
bias loop
8
loop loss
8
loop retention
8

Similar Publications

The expression of BHLHE22 in endometrial carcinoma: Associations with mismatch repair protein expression status, tumor-infiltrating immune cells, programmed death-ligand 1 and clinical outcomes.

Taiwan J Obstet Gynecol

January 2025

Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. Electronic address:

Objective: Endometrial cancer (EC) shows substantial heterogeneity in their immune microenvironment. BHLHE22 is consistently hypermethylated in EC and high expression of BHLHE22 is likely to be immunosuppressive in the tumor microenvironment. Herein, we evaluated expression of BHLHE22, programmed cell death ligand-1 (PD-L1), CD8, CD68 and mismatch repair proteins in EC.

View Article and Find Full Text PDF

For Electro-Hydraulic Actuators (EHA) with parametric uncertainties and mismatched and matched disturbances, most existing robust adaptive control strategies can achieve only uniformly ultimately bounded tracking errors. An Extended-State-Observer (ESO) based asymptotic control scheme is proposed by incorporating the prescribed performance control into the backstepping framework to ensure satisfied tracking performance and anti-disturbance ability of EHA systems. A novel ESO is designed to acquire an asymptotic estimation without prior bounds of the mismatched disturbance and its derivatives.

View Article and Find Full Text PDF

Background: Free functional muscle transfer (FFMT) for brachial plexus injury (BPI) requires adequate donor arterial flow for successful anastomosis. However, concomitant BPI and subclavian artery injury are not uncommon. Arteriovenous (AV) loop graft is one of the methods used to extend vessels to areas with vascular depletion.

View Article and Find Full Text PDF

Accurate localization is a critical technology for the application of intelligent robots and automation systems in complex indoor environments. Traditional visual SLAM (Simultaneous Localization and Mapping) techniques often face challenges with localization accuracy in high similarity scenes. To address this issue, this paper proposes an improved visual SLAM loop closure detection algorithm that integrates deep learning techniques.

View Article and Find Full Text PDF

Nuclear DNA is organized into a compact three-dimensional (3D) structure that impacts critical cellular processes. High-throughput chromosome conformation capture (Hi-C) is the most widely used method for measuring 3D genome architecture, while linear epigenomic assays, such as ATAC-seq, DNase-seq, and ChIP-seq, are extensively employed to characterize epigenomic regulation. However, the integrative analysis of chromatin interactions and associated epigenomic regulation remains challenging due to the pairwise nature of Hi-C data, mismatched resolution between Hi-C and epigenomic assays, and inconsistencies among analysis tools.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!