An inner membrane platform in the type II secretion machinery of Gram-negative bacteria.

EMBO Rep

Laboratoire de Chimie Bactérienne, IBSM, CNRS, 31 chemin Joseph Aiguier, Marseille Cedex 20, 13402, France.

Published: March 2001

AI Article Synopsis

Article Abstract

The type II secretion machinery allows most Gram-negative bacteria to deliver virulence factors into their surroundings. We report that in Erwinia chrysanthemi, GspE (the putative NTPase), GspF, GspL and GspM constitute a complex in the inner membrane that is presumably used as a platform for assembling other parts of the secretion machinery. The GspE-GspF-GspL-GspM complex was demonstrated by two methods: (i) co-immunoprecipitation of GspE-GspF-GspL with antibodies raised against either GspE or GspF; (ii) interactions in the yeast two-hybrid system between GspF and GspE, GspF and GspL, GspL and GspM. GspL was found to have an essential role in complex formation. We propose a model in which the GspE-GspF-GspL-GspM proteins constitute a building block within the secretion machinery on top of which another building block, referred to as a pseudopilus, assembles. By analogy, we predict that a similar platform is required for the biogenesis of the type IV pilus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1083838PMC
http://dx.doi.org/10.1093/embo-reports/kve042DOI Listing

Publication Analysis

Top Keywords

secretion machinery
16
inner membrane
8
type secretion
8
gram-negative bacteria
8
gspf gspl
8
gspl gspm
8
gspe gspf
8
building block
8
membrane platform
4
platform type
4

Similar Publications

Cancer cells frequently rewire their metabolism to support proliferation and evade immune surveillance, but little is known about metabolic targets that could increase immune surveillance. Here we show a specific means of mitochondrial respiratory complex I (CI) inhibition that improves tumor immunogenicity and sensitivity to immune checkpoint blockade (ICB). Targeted genetic deletion of either Ndufs4 or Ndufs6, but not other CI subunits, induces an immune-dependent growth attenuation in melanoma and breast cancer models.

View Article and Find Full Text PDF

Ubiquitin-A structural perspective.

Mol Cell

January 2025

Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. Electronic address:

The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques.

View Article and Find Full Text PDF

Molecular basis of conjugation-mediated DNA transfer by gram-negative bacteria.

Curr Opin Struct Biol

January 2025

Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, United Kingdom; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, WC1E 6BT, United Kingdom. Electronic address:

Bacterial conjugation is the unidirectional transfer of DNA (often plasmids, but also other mobile genetic elements, or even entire genomes), from a donor cell to a recipient cell. In Gram-negative bacteria, it requires the formation of three complexes in the donor cell: i-a large, double-membrane-embedded transport machinery called the Type IV Secretion System (T4SS), ii-a long extracellular tube, the conjugative pilus, and iii-a DNA-processing machinery termed the relaxosome. While knowledge has expanded regarding molecular events in the donor cell, very little is known about the machinery involved in DNA transfer into the recipient cell.

View Article and Find Full Text PDF

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

A Phage-Based Approach to Identify Antivirulence Inhibitors of Bacterial Type IV Pili.

Microb Biotechnol

January 2025

Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA.

The increasing threat of antibiotic resistance underscores the urgent need for innovative strategies to combat infectious diseases, including the development of antivirulants. Microbial pathogens rely on their virulence factors to initiate and sustain infections. Antivirulants are small molecules designed to target virulence factors, thereby attenuating the virulence of infectious microbes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!