Cobra venom factor (CVF) is the complement-activating protein in cobra venom. It is a three-chain glycoprotein with a molecular weight of 149,000 Da. In serum, CVF forms a bimolecular enzyme with the Bb subunit of factor B. The enzyme cleaves C3 and C5, causing complement consumption in human and mammalian serum. CVF is frequently used to decomplement serum to investigate the biological functions of complement and serves as a tool to investigate the multifunctionality of C3. Furthermore, CVF bears the potential for clinical application to deplete complement in situations where complement activation is involved in the pathogenesis of disease. CVF was isolated from Indian cobra (Naja naja naja) venom. The protein was crystallized at room temperature using the sitting-drop vapour-diffusion technique. The crystals diffract to 2.7 A resolution and belong to the tetragonal space group P4(1), with unit-cell parameters a = b = 62.7, c = 368.1 A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/s0907444901001342 | DOI Listing |
Toxins (Basel)
January 2025
Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
Chinese coral snakes () are highly neglected regarding their venom profiles and harm to humans, which impedes our ability to deeply understand their biological properties and explore their medicinal potential. In this study, we performed a comparative analysis to reveal the venom profiles of two Chinese coral snakes in terms of their venom yields, proteomic profiles, and immunorecognition by commercial antivenoms. The results showed that expels more venom (lyophilized venom mass) than but possesses a similar solid venom content.
View Article and Find Full Text PDFNature
January 2025
Department of Biochemistry, University of Washington, Seattle, WA, USA.
Snakebite envenoming remains a devastating and neglected tropical disease, claiming over 100,000 lives annually and causing severe complications and long-lasting disabilities for many more. Three-finger toxins (3FTx) are highly toxic components of elapid snake venoms that can cause diverse pathologies, including severe tissue damage and inhibition of nicotinic acetylcholine receptors, resulting in life-threatening neurotoxicity. At present, the only available treatments for snakebites consist of polyclonal antibodies derived from the plasma of immunized animals, which have high cost and limited efficacy against 3FTxs.
View Article and Find Full Text PDFCardiovasc Pathol
January 2025
Department of Anatomical Sciences, St. George's University, School of Medicine, West Indies, Grenada; Department of Pathology, St. George's University, School of Medicine, West Indies, Grenada; Department of Clinical Anatomy, Mayo Clinic, Rochester, Minnesota, USA; Nicolaus Copernicus Superior School, College of Medical Sciences, Olsztyn, Poland. Electronic address:
Vascular occlusive diseases remain a major health burden worldwide, necessitating a deeper understanding of the adaptive responses that mitigate their impact. Arteriogenesis, the growth and remodeling of collateral vessels in response to arterial occlusion, is a vital defense mechanism that counteracts fluid shear stress-induced vascular stenosis or occlusion. While physical factors driving arteriogenesis have been extensively studied, the specific cellular mediators involved are poorly understood.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
January 2025
Toxic Organisms Research Centre, Faculty of Science, University of Khartoum, Sudan.
Snakebite envenomation (SBE) is a neglected tropical disease. It causes substantial morbidity and mortality in Sudan. Despite its endemicity, there is a substantial lack of up-to-date data on venomous snakes and their geographical distribution in Sudan, with most information dating back to the early twentieth century.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
January 2025
Department of Biology, Chemistry and Physics, Faculty of Health, Natural Resources and Applied Sciences, Namibia University of Science and Technology, Private Bag 13388, 13 Jackson Kaujeua Street Windhoek, Windhoek, Namibia.
Background: Despite Naja nigricincta nigricincta being responsible for most snake envenomation in remote Namibian regions, an effective intervention against its venom remains undiscovered. This study aimed to scientifically validate Namibian folklore claims about Senegalia mellifera extract's efficacy against snake envenomation.
Methods: In vitro assays were conducted to assess the inhibitory potential of S.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!