Functional characterization of rat submaxillary gland muscarinic receptors using microphysiometry.

Br J Pharmacol

Neurobiology Unit, Roche Bioscience, 3401 Hillview Avenue, Palo Alto, California, CA 94304, USA.

Published: April 2001

1. Muscarinic cholinoceptors (MChR) in freshly dispersed rat salivary gland (RSG) cells were characterized using microphysiometry to measure changes in acidification rates. Several non-selective and selective muscarinic antagonists were used to elucidate the nature of the subtypes mediating the response to carbachol. 2. The effects of carbachol (pEC(50) = 5.74 +/- 0.02 s.e.mean; n = 53) were highly reproducible and most antagonists acted in a surmountable, reversible fashion. The following antagonist rank order, with apparent affinity constants in parentheses, was noted: 4-DAMP (8.9)= atropine (8.9) > tolterodine (8.5) > oxybutynin (7.9) > S-secoverine (7.2) > pirenzepine (6.9) > himbacine (6.8) > AQ-RA 741 (6.6) > methoctramine (5.9). 3. These studies validate the use of primary isolated RSG cells in microphysiometry for pharmacological analysis. These data are consistent with, and extend, previous studies using alternative functional methods, which reported a lack of differential receptor pharmacology between bladder and salivary gland tissue. 4. The antagonist affinity profile significantly correlated with the profile at human recombinant muscarinic M(3) and M(5) receptors. Given a lack of antagonists that discriminate between M(3) and M(5), definitive conclusion of which subtype(s) is present within RSG cells cannot be determined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1572705PMC
http://dx.doi.org/10.1038/sj.bjp.0703971DOI Listing

Publication Analysis

Top Keywords

rsg cells
12
muscarinic receptors
8
salivary gland
8
functional characterization
4
characterization rat
4
rat submaxillary
4
submaxillary gland
4
muscarinic
4
gland muscarinic
4
receptors microphysiometry
4

Similar Publications

Background: The design of smart, photoactivated nanomaterials for targeted drug delivery systems (DDS) has garnered significant research interest due in part to the ability of light to precisely control drug release in specific cells or tissues with high spatial and temporal resolution. The development of effective light-triggered DDS involves mechanisms including photocleavage, photoisomerization, photopolymerization, photosensitization, photothermal phenomena, and photorearrangement, which permit response to ultraviolet (UV), visible (Vis), and/or Near Infrared (NIR) light. This review explores recent advancements in light-responsive small molecules, polymers, and nanocarriers, detailing their underlying mechanisms and utility for drug delivery and/or imaging.

View Article and Find Full Text PDF

Improving PD-1 blockade plus chemotherapy for complete remission of lung cancer by nanoPDLIM2.

Elife

December 2024

UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, United States.

Immune checkpoint inhibitors (ICIs) and their combination with other therapies such as chemotherapy, fail in most cancer patients. We previously identified the PDZ-LIM domain-containing protein 2 (PDLIM2) as a bona fide tumor suppressor that is repressed in lung cancer to drive cancer and its chemo and immunotherapy resistance, suggesting a new target for lung cancer therapy improvement. In this study, human clinical samples and data were used to investigate genetic and epigenetic changes in lung cancer.

View Article and Find Full Text PDF

Recent studies demonstrate that lipid peroxidation-induced ferroptosis participates in 2,2',4,4'-tetrabromodiphenyl ether (BDE-47)-evoked neurotoxicity and cognitive dysfunction. Melatonin has been indicated to confer neuroprotection against brain diseases via its potent anti-ferroptotic effects. Therefore, this study aims to explore whether melatonin can mitigate BDE-47-elicited cognitive impairment via suppressing ferroptosis, and further delineate the underlying mechanisms.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) travel through the vasculature to seed secondary sites and serve as direct precursors of metastatic outgrowth for many solid tumors. Heterotypic cell clusters form between CTCs and white blood cells (WBCs) and recent studies report that a majority of these WBCs are neutrophils in patient and mouse models. The lab discovered that CTCs produce tubulin-based protrusions, microtentacles (McTNs), which promote reattachment, retention in distant sites during metastasis and formation of tumor cell clusters.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how resistance to PD-L1 inhibitors affects interferon (IFN) signaling and influences secretory changes in tumor cells.
  • It identifies a specific tumor secretome (PTIS) induced by anti-PD-L1 treatment, which can suppress T cell activation and reduce the effectiveness of immune response against tumors.
  • The research emphasizes the need for in vivo resistance models to better understand treatment failures, as the tumor's adaptive secretory changes regulated by type I IFNs play a significant role in evading immune attacks.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!