A pentiptycene-bispyrenyl system (1) has been synthesized and investigated as a fluorescent chemosensor for metal ions. A novel blue shift along with an intensity enhancement of the pyrene excimer emission is observed for 1 in the presence of Cu(2+). Such a new signal transduction mode of pyrene probes results from the formation of a static pyrene excimer that has very different characteristics from its dynamic counterpart.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol015524yDOI Listing

Publication Analysis

Top Keywords

pyrene excimer
12
blue shift
8
excimer emission
8
signal transduction
8
transduction mode
8
mode pyrene
8
pyrene probes
8
pyrene
5
cu2+-induced blue
4
shift pyrene
4

Similar Publications

Aggregation-caused quenching (ACQ) reduces luminescence and compromises brightness in solid-state displays, necessitating strategies to mitigate its effects for enhanced performance. This study presents cost-effective method to mitigate ACQ of pyrene by co-assembling polycyclic aromatic hydrocarbons within low molecular weight gelator. ​Synthesized from readily available materials-cholesteryl chloroformate and pentaerythritol-in one-step reaction, gelator incorporates four cholesteryl units, reported to promote robust supramolecular gels in various solvents.

View Article and Find Full Text PDF

Synthesis of Pyrene Diimide Isomers with Tunable Excimer Emission.

Org Lett

January 2025

Department of Chemistry and Biochemistry, Fordham University, Bronx, New York 10458, United States.

The optoelectronic properties of pyrene diimides (PyDIs) are of strategic interest given the successful application of similar rylene diimides as n-type organic semiconductors in a variety of organic electronics. We present an improved synthesis for 1,5,6,10-pyrene diimide and the first report of its isomer, 1,8,9,10-pyrene diimide. We demonstrate the effect of imide placement on the core structure, optical properties, and electron affinities.

View Article and Find Full Text PDF

Aptamer-based fluorescence biosensor for rapid detection of chloramphenicol based on pyrene excimer switch.

Anal Bioanal Chem

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

Chloramphenicol (CAP) is widely used in treating bacteria infection in animals and humans. However, the accumulation of CAP in food and environment caused serious health risk to human. Consequently, sensitive and selective detection of CAP is of great importance in environmental monitoring and food safety.

View Article and Find Full Text PDF

We present the synthesis, characterization, and photophysical properties of two pyrene-modified () pincer bismuth complexes, where the pyrenyl residues are either part of the cyclometalating pincer ligand (1) or bound as monodentate ligands to the Bi ion (2). Both complexes are dually emissive at 77 K. For complex 2, pyrenyl phosphorescence persists at r.

View Article and Find Full Text PDF

Tetrabromobisphenol A, but not bisphenol A, disrupts plasma membrane homeostasis in myeloid cell models - A novel threat from an established persistent organic pollutant.

Sci Total Environ

January 2025

Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland. Electronic address:

Article Synopsis
  • The study investigates the effects of Bisphenol A (BPA) and Tetrabromobisphenol A (TBBPA) on the dynamics of biological membranes, focusing on how these persistent organic pollutants impact myeloid cell lines.
  • It was found that TBBPA specifically disrupts the plasma membrane's biophysical homeostasis, increasing mobility and decreasing order, while BPA showed no significant effects.
  • The findings highlight TBBPA's potential to impair immune function, emphasizing the environmental toxicity concerns associated with persistent organic pollutants.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!