An "elongated" translation elongation factor Tu for truncated tRNAs in nematode mitochondria.

J Biol Chem

Department of Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.

Published: June 2001

We have found the gene for a translation elongation factor Tu (EF-Tu) homologue in the genome of the nematode Caenorhabditis elegans. Because the corresponding protein was detected immunologically in a nematode mitochondrial (mt) extract, it could be regarded as a nematode mt EF-Tu. The protein possesses an extension of about 57 amino acids (we call this domain 3') at the C terminus, which is not found in any other known EF-Tu. Because most nematode mt tRNAs lack a T stem, domain 3' may be related to this feature. The nematode EF-Tu bound to nematode T stem-lacking tRNA, but bacterial EF-Tu was unable to do so. A series of domain exchange experiments strongly suggested that domains 3 and 3' are essential for binding to T stem-lacking tRNAs. This finding may constitute a novel example of the co-evolution of a structurally simplified RNA and the cognate RNA-binding protein, the latter having apparently acquired an additional domain to compensate for the lack of a binding site(s) on the RNA.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M011118200DOI Listing

Publication Analysis

Top Keywords

translation elongation
8
elongation factor
8
nematode ef-tu
8
nematode
7
ef-tu
5
"elongated" translation
4
factor truncated
4
truncated trnas
4
trnas nematode
4
nematode mitochondria
4

Similar Publications

Thiolation, a post-transcriptional modification catalyzed by Uba4-Urm1-Ncs2/Ncs6 pathway in three specific transfer RNAs (tRNAs), is conserved from yeast to humans and plays an important role in enhancing codon-anticodon interaction and translation efficiency. Yet, except for affecting effector secretion, its roles in plant pathogenic fungi are not fully understood. Here, we used Magnaporthe oryzae as a model system to illustrate the vital role of s2U34 modification on the appressorium-mediated virulence.

View Article and Find Full Text PDF

Inherent asymmetry of Rpd3S coordinates its nucleosome engagement and association with elongating RNA polymerase II.

Nat Struct Mol Biol

January 2025

Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

The Rpd3S histone deacetylase complex has a crucial role in genomic integrity by deacetylating transcribed nucleosomes following RNA polymerase (Pol) II passage. Cryo-EM studies highlight the importance of asymmetrical Rco1-Eaf3 dimers in nucleosome binding, yet the interaction dynamics with nucleosomal substrates alongside elongating Pol II are poorly understood. Here we demonstrate the essential function of the Rco1 N-terminal intrinsically disordered region (IDR) in modulating Pol II association, in which K/R mutations within the Rco1 IDR impair interaction of Rpd3S with the C-terminal domain (CTD) of Rpb1, without affecting nucleosome recognition or complex integrity.

View Article and Find Full Text PDF

Insulin amyloid morphology is encoded in H-bonds and electrostatics interactions ruling protein phase separation.

J Colloid Interface Sci

December 2024

Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark. Electronic address:

Ion-protein interactions regulate biological processes and are the basis of key strategies of modulating protein phase diagrams and stability in drug development. Here, we report the mechanisms by which H-bonds and electrostatic interactions in ion-protein systems determine phase separation and amyloid formation. Using microscopy, small-angle X-ray scattering, circular dichroism and atomistic molecular dynamics (MD) simulations, we found that anions specifically interacting with insulin induced phase separation by neutralising the protein charge and forming H-bond bridges between insulin molecules.

View Article and Find Full Text PDF

DDX21, a member of the DEAD-box RNA helicase family, plays a pivotal role in various aspects of RNA metabolism, including ribosomal RNA (rRNA) processing, transcription, and translation. Its diverse functions in cancer progression and viral infections have attracted considerable attention. DDX21 exerts a pivotal function through ribosomal DNA (rDNA) transcription and rRNA processing.

View Article and Find Full Text PDF

Aminoglycosides are one of the first classes of natural antibiotics which have not lost relevance due to their broad spectrum of action against Gram-positive, Gram-negative bacteria and mycobacteria. The high growth rate of antimicrobial resistance (AMR) together with the severe side effects of aminoglycosides increase the importance of developing improved semisynthetic derivatives. In this work, we proposed a synthetic route to new tobramycin derivatives modified at the 6″-position with aminoalkylamine or guanidinoalkylamine residues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!