A novel method is reported for generation of the difficult-to-obtain (imine)Pt(II) compounds that involves reduction of the corresponding readily available Pt(IV)-based imines by carbonyl-stabilized phosphorus ylides, Ph3P=CHCO2R, in nonaqueous media. The reaction between neutral (imino)Pt(IV) compounds [PtCl4[NH=C(Me)ON=CR1R2]2] [R1R2 = Me2, (CH2)4, (CH2)5, (Me)C(Me)=NOH], [PtCl4[NH=C(Me)ONR2]2] (R = Me, Et, CH2Ph), (R1 = H; R2 = Ph or C6H4Me; R3 = Me) as well as anionic-type platinum(IV) complexes (Ph3PCH2Ph)[PtCl5[NH=C(Me)ON=CR2]] [R2 = Me2, (CH2)4, (CH2)5] and 1 equiv of Ph3P=CHCO2R (R = Me, Et) proceeds under mild conditions (ca. 4 h, room temperature) to give selectively the platinum(II) products (in good to excellent isolated yields) without further reduction of the platinum center. All thus prepared compounds (excluding previously described Delta4-1,2,4-oxadiazoline complexes) were characterized by elemental analyses, FAB mass spectrometry, IR and 1H, 13C[1H], 31P[1H] and 195Pt NMR spectroscopies, and X-ray single-crystal diffractometry, the latter for [PtCl2[NH=C(Me)ON=CMe2]2] [crystal system tetragonal, space group P4(2)/n (No. 86), a = b = 10.5050(10) A, c = 15.916(3) A] and (Ph3PCH2CO2Me)[PtCl3(NCMe)] [crystal system orthorhombic, space group Pna2(1) (No. 33), a = 19.661(7) A, b = 12.486(4) A, c = 10.149(3) A]. The reaction is also extended to a variety of other Pt(II)/Pt(IV) couples, and the ylides Ph3P=CHCO2R are introduced as mild and selective reducing agents of wide applicability for the conversion of Pt(IV) to Pt(II) species in nonaqueous media, a route that is especially useful in the case of compounds that cannot be prepared directly from Pt(II) precursors, and for the generation of systematic series of Pt(II)/Pt(IV) complexes for biological studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic000769c | DOI Listing |
J Org Chem
November 2020
Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, P. R. China.
We report carbonyl-stabilized phosphorus ylides as general and efficient catalysts for the cyanosilylation of ketones. The ,-diethylacetamide derived phosphorane is identified as an extremely efficient catalyst for the cyanosilylation of dialkyl ketones, alkyl aryl ketones, diaryl ketones, and α,β-unsaturated enones with catalyst loading down to 0.005 mol %, the lowest ever known for ketone cyanosilylation.
View Article and Find Full Text PDFInorg Chem
March 2001
Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
A novel method is reported for generation of the difficult-to-obtain (imine)Pt(II) compounds that involves reduction of the corresponding readily available Pt(IV)-based imines by carbonyl-stabilized phosphorus ylides, Ph3P=CHCO2R, in nonaqueous media. The reaction between neutral (imino)Pt(IV) compounds [PtCl4[NH=C(Me)ON=CR1R2]2] [R1R2 = Me2, (CH2)4, (CH2)5, (Me)C(Me)=NOH], [PtCl4[NH=C(Me)ONR2]2] (R = Me, Et, CH2Ph), (R1 = H; R2 = Ph or C6H4Me; R3 = Me) as well as anionic-type platinum(IV) complexes (Ph3PCH2Ph)[PtCl5[NH=C(Me)ON=CR2]] [R2 = Me2, (CH2)4, (CH2)5] and 1 equiv of Ph3P=CHCO2R (R = Me, Et) proceeds under mild conditions (ca. 4 h, room temperature) to give selectively the platinum(II) products (in good to excellent isolated yields) without further reduction of the platinum center.
View Article and Find Full Text PDFInorg Chem
October 1996
University Chemical Laboratory, Lensfield Road, CB2 1EW Cambridge, U.K.
PtCl(2) reacts with C(6)F(5)CN to give trans-[PtCl(2)(NCC(6)F(5))(2)] (1) which, in turn, reacts with carbonyl-stabilized phosphorus ylides Ph(3)P=CHR [R = C(O)Me, CO(2)Et] to give trans-[PtCl(2){NH=C(C(6)F(5))C(=PPh(3))CO(2)Et}{NCC(6)F(5)}] (2a), trans-[PtCl(2){NH=C(C(6)F(5))C(=PPh(3))CO(2)Et}(2)] (3a), trans-[PtCl(2){E-NH=C(C(6)F(5))C(=PPh(3))C(O)Me}(2)] (3b) or trans-[PtCl(2){E-N(=PPh(3))C(C(6)F(5))=CHCO(2)Et}{E-NH=C(C(6)F(5))C(=PPh(3))CO(2)Et}] (4), depending on the reaction conditions. Similarly, Ph(3)P=CHCO(2)Me reacts with trans-[PtCl(2)(NCMe)(2)] to give trans-[PtCl(2){NH=CMeC(=PPh(3))CO(2)Me}(NCMe)] (2b). Complex 3b.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!