A substantial projection from the retina to the dorsal raphe nucleus (DRN) has been demonstrated in the Chilean degus, a diurnal/crepuscular hystricomorph rodent. Following intraocular injection of cholera toxin subunit B (CTB), immunocytochemically labeled CTB-positive axons and terminals were observed in all major retinorecipient nuclei as well as in the DRN and periaqueductal gray (PAG) of the mesencephalon. Two streams of optic axons to the DRN were observed: one descending from the optic tract at the level of the pretectum and anterior superior colliculus, the other emerging as a small fascicle at the anterior pole of the inferior colliculus and descending bilaterally through the PAG. Contralateral retinal afferents in the DRN appeared to terminate primarily in the dorsomedial and lateral subdivisions of the DRN, and a less extensive ipsilateral component also was observed. Axonal arborizations were characterized by short branches and multiple varicosities, both in the DRN and in the PAG. The extent and density of DRN retinal afferents were not as extensive as previously observed in Mongolian gerbils using identical techniques, but the retinal-DRN projection is considerably larger in degus than in rats. The functional significance of the retinal-DRN pathway remains to be determined, although a variety of evidence indicates that light may directly affect the activity of neurons and serotonin levels in the DRN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-8993(01)02061-3 | DOI Listing |
Eur J Neurosci
January 2025
Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia.
The serotonergic raphe magnus (RMg) and dorsal raphe (DR) nuclei are crucial pain-regulating structures, which nociceptive activity is shown to be altered in gut pathology, but the underlying neuroplastic changes remain unclear. Considering the importance of 5-HT1A receptors in modulating both pain and raphe neuronal activity, in this study, we aimed to determine whether 5-HT1A-dependent visceral and somatic nociceptive processing within the RMg and DR is modified in postcolitis conditions. In anaesthetised male Wistar rats, healthy control and recovered from TNBS-induced colitis, the microelectrode recordings of RMg and DR neuron responses to noxious colorectal distension (CRD) or tail squeezing (TS) were performed prior and after intravenous administration of 5-HT1A agonist, buspirone.
View Article and Find Full Text PDFJ Pharmacol Sci
February 2025
Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Japan; Project for Neural Networks, Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Japan. Electronic address:
Major depressive disorder (MDD) is among the most common mental disorders worldwide and is characterized by dysregulated reward processing associated with anhedonia. Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for MDD; however, their onset of action is delayed. Recent reports have shown that serotonin neurons in the dorsal raphe nucleus (DRN) are activated by rewards and play a vital role in reward processing.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.
Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS.
View Article and Find Full Text PDFJ Anat
January 2025
Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil.
Non-image forming (NIF) pathways, a specialized branch of retinal circuitry, play a crucial role supporting physiological and behavioral processes, including circadian rhythmicity. Among the NIF regions, the dorsal raphe nucleus (DRN), a midbrain serotonergic cluster of neurons, is also devoted to circadian functions. Despite indirectly send photic inputs to circadian centers and modulating their activities, little is known about the organization of retina-DRN circuits in primate species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3TA, United Kingdom.
Daily life for humans and other animals requires switching between periods of threat- and reward-oriented behavior. We investigated neural activity associated with spontaneous switching, in a naturalistic task, between foraging for rewards and seeking information about potential threats with 7T fMRI in healthy humans. Switching was driven by estimates of likelihood of threat and reward.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!