The purpose of the present work was to investigate the mechanism underlying the inhibitory action of rebamipide on superoxide anion (O2) production induced by the chemotactic peptide formyl-methionyl-leucyl-phenylalanine (fMLP) in human neutrophils. Phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), a product of phosphoinositide 3-OH-kinase (PI 3-kinase) accumulated in response to fMLP and this accumulation was well correlated with O2 production in human neutrophils. Rebamipide inhibited PIP(3) production in parallel with the inhibition of fMLP-induced O2 production. PI 3-kinase activity in anti-PI 3-kinase p85 immunoprecipitates was not affected by the presence of rebamipide, therefore rebamipide did not have a direct inhibitory action on PI 3-kinase activity. Since rebamipide had no inhibitory effect on O2 production induced by NaF, a direct activator of G protein, the target of the inhibitory action of rebamipide appears to be a component of the signal transduction pathway upstream of G protein. Scatchard analysis of [3H]fMLP binding to human neutrophil membrane revealed that rebamipide increased the K(D) value of [3H]fMLP without altering the number of [3H]fMLP binding sites, suggesting that rebamipide has a competitive antagonistic action against the fMLP-receptor. The competitive antagonistic action was further confirmed by the finding that rebamipide caused a parallel shift to the right in the dose-response curve of O2 production induced by fMLP. These results provide evidence that the competitive inhibitory action of rebamipide on the fMLP-receptor plays a main role in its inhibitory action on fMLP-induced O2 production.
Download full-text PDF |
Source |
---|
Alzheimers Dement
December 2024
Shoolini University, Solan, Himachal Pradesh, India.
Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline, neuroinflammation, and mitochondrial dysfunction. In Alzheimer's, abnormal Mitochondrial Permeability Transition Pore (mPTP) activity may contribute to mitochondrial dysfunction and neuronal damage. Withanolide A, a naturally occurring compound derived from Withania somnifera, have shown potential neuroprotective effects in various neurological disorders.
View Article and Find Full Text PDFBackground: In the brain as in other organs, complement contributes to immune defence and housekeeping to maintain homeostasis. Sources of complement may include local production by brain cells and influx from the periphery, the latter severely restricted by the blood brain barrier (BBB) in healthy brain. Dysregulation of complement leads to excessive inflammation, direct damage to self-cells and propagation of injury.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
Hesperidin, an active constituent of traditional Chinese medicine, Chenpi, exhibits anticancer properties across different cancers. This study aimed to clarify the efficacy of Hesperidin against tumors and its mechanisms of action in colon cancer. : We assessed the efficacy of Hesperidin on human colon cancer cells (HCT-116 and DLD-1) and normal colonic epithelial cells (NCM460).
View Article and Find Full Text PDFIn Silico Pharmacol
January 2025
Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
Unlabelled: The implication of matrix metalloproteinase-12 (MMP-12) in various major disorders including cancer, COPD, cardiovascular disorders, and neurological diseases makes it a potential target for drug discovery. Contemplating the significance of MMP-12, a number of MMP-12 inhibitors were designed, synthesized and tested throughout the world but the non-selective nature of most of those molecules can lead to adverse drug interactions. In contradiction, the dibenzofuran (DBF) and dibenzothiophene (DBT) derivatives showed highly potent and selective MMP-12 inhibition.
View Article and Find Full Text PDFImmunol Invest
January 2025
Biotechnology Center, Federal University of Paraíba, João Pessoa, Brazil.
Background: Phagocytosis is an important function of macrophages. However, when it's dysregulated, it could compromise homeostasis. Thus, this study aimed to assess the inhibitory activity of pterocarpanquinone LQB 118 on murine macrophage phagocytosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!