PTEN is a putative tumour suppressor gene located on chromosome band 10q23. Mutations in PTEN have been identified in numerous human malignancies, including cancers of the brain, endometrium, ovary, and prostate. In this study, we screened 80 Barrett's oesophagus-associated adenocarcinomas (BOAd) for loss of heterozygosity (LOH) at 10q23, using the microsatellite markers D10S541, D10S219, and D10S551. Tumours demonstrating LOH were then screened for the presence or absence of PTEN mutations. LOH at one or more loci was identified in 17/80 (21%) cases. In none of these cases did we detect mutations in PTEN. The presence of LOH did not correlate with patient age, tumour stage, degree of differentiation, presence of perineural or vascular invasion, or overall survival. We conclude that LOH at chromosome 10q23 is uncommon in BOAd, is not associated with mutations in the PTEN tumour suppressor gene, and does not correlate with the clinical or pathologic features of these tumours. It is possible that PTEN is inactivated through other mechanisms in BOAd.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2363812PMC
http://dx.doi.org/10.1054/bjoc.2000.1660DOI Listing

Publication Analysis

Top Keywords

tumour suppressor
12
suppressor gene
12
mutations pten
12
pten tumour
8
barrett's oesophagus-associated
8
pten
7
loh
5
allelic loss
4
10q23
4
loss 10q23
4

Similar Publications

Triple-negative breast cancer (TNBC) is recognized as the most aggressive subtype of breast cancer. Epigenetic silencing, such as DNA methylation mediated by DNA methyltransferases (DNMTs) plays key roles in TNBC tumorigenesis. Hypomethylating agents (HMAs) such as azacitidine, decitabine, and guadecitabine are key inhibitors of DNMTs, and accumulating evidence has shown their immunogenicity properties.

View Article and Find Full Text PDF

The foremost feature of glioblastoma (GBM), the most frequent malignant brain tumours in adults, is a remarkable degree of intra- and inter-tumour heterogeneity reflecting the coexistence within the tumour bulk of different cell populations displaying distinctive genetic and transcriptomic profiles. GBM with primitive neuronal component (PNC), recently identified by DNA methylation-based classification as a peculiar GBM subtype (GBM-PNC), is a poorly recognized and aggressive GBM variant characterised by nodules containing cells with primitive neuronal differentiation along with conventional GBM areas. In addition, the presence of a PNC component has been also reported in IDH-mutant high-grade gliomas (HGGs), and to a lesser extent to other HGGs, suggesting that regardless from being IDH-mutant or IDH-wildtype, peculiar genetic and/or epigenetic events may contribute to the phenotypic skewing with the emergence of the PNC phenotype.

View Article and Find Full Text PDF

Metabolic Reprogramming and Adaption in Breast Cancer Progression and Metastasis.

Adv Exp Med Biol

January 2025

Department of Molecular Biology, Princeton University, Princeton, NJ, USA.

Recent evidence has revealed that cancer is not solely driven by genetic abnormalities but also by significant metabolic dysregulation. Cancer cells exhibit altered metabolic demands and rewiring of cellular metabolism to sustain their malignant characteristics. Metabolic reprogramming has emerged as a hallmark of cancer, playing a complex role in breast cancer initiation, progression, and metastasis.

View Article and Find Full Text PDF

The Microenvironment in DCIS and Its Role in Disease Progression.

Adv Exp Med Biol

January 2025

Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK.

Ductal carcinoma in situ (DCIS) accounts for ~20% of all breast cancer diagnoses but whilst known to be a precursor of invasive breast cancer (IBC), evidence suggests only one in six patients will ever progress. A key challenge is to distinguish between those lesions that will progress and those that will remain indolent. Molecular analyses of neoplastic epithelial cells have not identified consistent differences between lesions that progressed and those that did not, and this has focused attention on the tumour microenvironment (ME).

View Article and Find Full Text PDF

Iron metabolism in a mouse model of hepatocellular carcinoma.

Sci Rep

January 2025

Institute of Comparative Molecular Endocrinology, Ulm University, 89081, Ulm, Germany.

Hepatocellular carcinoma (HCC) remains the most prevalent type of primary liver cancer worldwide. p53 is one of the most frequently mutated tumor-suppressor genes in HCC and its deficiency in hepatocytes triggers tumor formation in mice. To investigate iron metabolism during liver carcinogenesis, we employed a model of chronic carbon tetrachloride injections in liver-specific p53-deficient mice to induce liver fibrosis, cirrhosis and subsequent carcinogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!