Cofilin, an actin-binding protein, plays an important role in the migration, phagocytosis, and superoxide production of activated phagocytes through cytoskeletal reorganization. In unstimulated phagocytes, cofilin is a major phosphoprotein. However, upon activation, the phosphoprotein is dephosphorylated and translocated from cytosol to plasma membranes. Only the unphosphorylated form of cofilin is an active form that binds actin, whereas the regulatory mechanisms of cofilin have not been elucidated. We found that 1-[6-[[17beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122), an inhibitor of phospholipase C (PLC), suppressed both opsonized zymosan (OZ)-induced dephosphorylation and translocation of cofilin in macrophage-like U937 cells at 4 microM concentration. OZ triggered an increase in inositol 1,4,5-trisphosphate (IP3), and U73122 inhibited it. 1-[6-[[17beta-3-Methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-pyrrodione-dione (U73343), which was employed as an inactive analogue, had no such inhibitory activities as did U73122. Furthermore, herbimycin A, an inhibitor of src-type tyrosine kinase, also inhibited OZ-triggered IP3 formation. These results suggest that the activity and localization of cofilin are regulated by PLC at the downstream of src-family tyrosine kinase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0898-6568(00)00124-8DOI Listing

Publication Analysis

Top Keywords

dephosphorylation translocation
8
translocation cofilin
8
macrophage-like u937
8
u937 cells
8
tyrosine kinase
8
cofilin
7
u73122
4
u73122 inhibits
4
inhibits dephosphorylation
4
cofilin activated
4

Similar Publications

Baculovirus protein kinase 1 activates AMPK-protein phosphatase 5 axis to hijack transcription factor EB for self-proliferation.

Int J Biol Macromol

January 2025

Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Baculovirus causes lethal nuclear polyhedrosis in insects, whereas its regulatory mechanism on host transcription has not been fully illustrated. Herein, Bombyx mori nucleopolyhedrovirus (BmNPV) infection caused dephosphorylation and thus cytoplasmic-nucleo translocation of transcription factor EB (BmTFEB) by inhibiting Mechanistic target of rapamycin complex 1 (MTORC1), while upregulating Adenosine monophosphate-activated protein kinase (AMPK) signaling to promote self-proliferation through the rival protein kinase 1 in Bombyx mori. Significantly, B.

View Article and Find Full Text PDF

Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.

View Article and Find Full Text PDF

Cancer cell overexpresses numerus proteins, however, how these up-regulated proteins, especially those enzymatically opposite kinases and phosphatases, act together to promote oncogenesis is unknown. Here, we reported that protein tyrosine phosphatase H1 (PTPH1) is a scaffold protein for receptor tyrosine kinase (HER2) to potentiate breast tumorigenesis. PTPH1 utilizes its PDZ domain to bind HER2, p38γ, PBK, and YAP1 and to increase HER2 nuclear translocation, stemness, and oncogenesis.

View Article and Find Full Text PDF

PPTC7 is a mitochondrial phosphatase that is essential for mitochondrial biogenesis, metabolism, protein content maintenance and transport. While the mitochondrial roles of PPTC7 are well-characterized, its roles outside the mitochondria are unclear. Here we identified a non-mitochondrial role for PPTC7 in regulating epidermal growth factor receptor (EGFR) trafficking.

View Article and Find Full Text PDF

Autophagy mediated by ROS-AKT-FoxO pathway is required for intestinal regeneration in echinoderms.

Cell Commun Signal

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.

Autophagy is essential for maintaining material balance and energy circulation and plays a critical role as a regulatory mechanism in tissue regeneration. However, current studies primarily describe this phenotype, with limited exploration of its molecular mechanisms. In this study, we provided the first evidence that autophagy is required for intestinal regeneration in Apostichopus japonicus and identified a previously unrecognized regulatory mechanism involved in this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!