A number of different processing techniques have been developed to design and fabricate three-dimensional (3D) scaffolds for tissue-engineering applications. The imperfection of the current techniques has encouraged the use of a rapid prototyping technology known as fused deposition modeling (FDM). Our results show that FDM allows the design and fabrication of highly reproducible bioresorbable 3D scaffolds with a fully interconnected pore network. The mechanical properties and in vitro biocompatibility of polycaprolactone scaffolds with a porosity of 61 +/- 1% and two matrix architectures were studied. The honeycomb-like pores had a size falling within the range of 360 x 430 x 620 microm. The scaffolds with a 0/60/120 degrees lay-down pattern had a compressive stiffness and a 1% offset yield strength in air of 41.9 +/- 3.5 and 3.1 +/- 0.1 MPa, respectively, and a compressive stiffness and a 1% offset yield strength in simulated physiological conditions (a saline solution at 37 degrees C) of 29.4 +/- 4.0 and 2.3 +/- 0.2 MPa, respectively. In comparison, the scaffolds with a 0/72/144/36/108 degrees lay-down pattern had a compressive stiffness and a 1% offset yield strength in air of 20.2 +/- 1.7 and 2.4 +/- 0.1 MPa, respectively, and a compressive stiffness and a 1% offset yield strength in simulated physiological conditions (a saline solution at 37 degrees C) of 21.5 +/- 2.9 and 2.0 +/- 0.2 MPa, respectively. Statistical analysis confirmed that the five-angle scaffolds had significantly lower stiffness and 1% offset yield strengths under compression loading than those with a three-angle pattern under both testing conditions (p < or = 0.05). The obtained stress-strain curves for both scaffold architectures demonstrate the typical behavior of a honeycomb structure undergoing deformation. In vitro studies were conducted with primary human fibroblasts and periosteal cells. Light, environmental scanning electron, and confocal laser microscopy as well as immunohistochemistry showed cell proliferation and extracellular matrix production on the polycaprolactone surface in the 1st culturing week. Over a period of 3-4 weeks in a culture, the fully interconnected scaffold architecture was completely 3D-filled by cellular tissue. Our cell culture study shows that fibroblasts and osteoblast-like cells can proliferate, differentiate, and produce a cellular tissue in an entirely interconnected 3D polycaprolactone matrix.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1097-4636(200105)55:2<203::aid-jbm1007>3.0.co;2-7 | DOI Listing |
Vet Comp Orthop Traumatol
January 2025
School of Engineering, University of Guelph, Guelph, Ontario, Canada.
Objective: To determine the effect of locking head inserts (LHI) on plate strain, stiffness, and deformation when applied to a 3.5-mm broad locking compression plate (LCP) in an open fracture-gap model.
Study Design: Six, 13-hole, 3.
Prosthet Orthot Int
November 2024
AMPrint Center, Rochester Institute of Technology, Rochester, NY, USA.
Background: Pressure, shear stress, and friction can contribute to soft tissue damage experienced by a residual limb. Current compression/release stabilized (CRS) socket designs may pose a risk to soft tissue from abrupt compression differences within the socket.Objectives:Density-graded lattice structures are investigated for their potential to mitigate risk of tissue damage by assessing their ability to produce more gradual transitions between high-compression and low-compression areas.
View Article and Find Full Text PDFBMJ Surg Interv Health Technol
October 2024
Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire, UK.
Objectives: To assess the effect of adjuvant antibiotic-loaded hydrogel application on the primary stability of implanted uncemented hip stems.
Design: Biomechanical study.
Setting: An electro-mechanic material test system (#5866, Instron, Norwood, MA, USA) equipped with a 10-kN load cell was used.
Magn Reson Med
March 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Purposes: To enhance the functional capability of MRI, this study aims to develop a novel MR elastography (MRE) sequence that achieves rapid acquisition without distortion artifacts.
Methods: A displacement-encoded stimulated echo (DENSE) with multiphase acquisition scheme was used to capture wave images. A center-out golden-angle stack-of-stars sampling pattern was introduced for improved SNR and data incoherence.
ACS Macro Lett
October 2024
Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States.
Telechelic polymers are effective rheological modifiers that bridge between associative constituents to form elastic networks. The performance of linear telechelic chains, however, is controlled by entropic forces and thus suffers from an upper limit on bridge formation. This work overcomes this limitation by utilizing telechelic triblock copolymers containing bottlebrush midblocks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!