Glycogen metabolism in aerobic mixed cultures.

Biotechnol Bioeng

Department of Environmental Science and Engineering, Technical University of Denmark, Lyngby, Denmark.

Published: April 2001

In this study, the metabolism of glycogen storage and consumption in mixed cultures under aerobic conditions is described. The experimental results are used to calibrate a metabolic model, which as sole stoichiometric variables has the efficiency of oxidative phosphorylation (delta) and maintenance requirement in units of adenosine triphosphate (m(ATP)). Using the experimental data and values from the literature we show that delta and m(ATP) are strongly coupled and that the values determined for glycogen and poly-beta-hydroxybutyrate (PHB) metabolism are similar. We also demonstrate that storage of glycogen and subsequent growth occur without significant loss of energy, as compared with direct growth on glucose. For kinetic modeling, Monod kinetics is used most commonly in activated sludge models to describe the rate of microbial transformation. Monod kinetics, however, does not provide a good description of the data obtained. Second-order kinetics gives a better description of the rate of glycogen degradation. Formation and consumption of glycogen appears to be much faster than for PHB.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.1040DOI Listing

Publication Analysis

Top Keywords

mixed cultures
8
monod kinetics
8
glycogen
6
glycogen metabolism
4
metabolism aerobic
4
aerobic mixed
4
cultures study
4
study metabolism
4
metabolism glycogen
4
glycogen storage
4

Similar Publications

Purpose: Cardiomyocyte death is a major cytopathologic response in acute myocardial infarction (AMI) and involves complex inflammatory interactions. Although existing reports indicating that mixed lineage kinase domain-like protein (MLKL) is involved in macrophage necroptosis and inflammasome activation, the downstream mechanism of MLKL in necroptosis remain poorly characterized in AMI.

Methods: MLKL knockout mice (MLKL), RIPK3 knockout mice (RIPK3), and macrophage-specific MLKL conditional knockout mice (MLKL) were established.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic has highlighted the crucial role of artificial intelligence (AI) in predicting mortality and guiding healthcare decisions. However, AI models may perpetuate or exacerbate existing health disparities due to demographic biases, particularly affecting racial and ethnic minorities. The objective of this study is to investigate the demographic biases in AI models predicting COVID-19 mortality and to assess the effectiveness of transfer learning in improving model fairness across diverse demographic groups.

View Article and Find Full Text PDF

Introduction: Certain aspects of indigenous communities, such as cultural practices and access to care, have been discussed as potential determinants of oral health. However, research on this topic remains limited. Understanding the factors influencing oral health and their perceptions is crucial for developing culturally appropriate interventions.

View Article and Find Full Text PDF

Background: Educational innovation in health professional education is needed to keep up with rapidly changing healthcare systems and societal needs. This study evaluates the implementation of PACE, an innovative curriculum designed by the physiotherapy department of the HAN University of Applied Sciences in The Netherlands. The PACE concept features an integrated approach to learning and assessment based on pre-set learning outcomes, personalized learning goals, flexible learning routes, and programmatic assessment.

View Article and Find Full Text PDF

This study advances microfluidic probe (MFP) technology through the development of a 3D-printed Microfluidic Mixing Probe (MMP), which integrates a built-in pre-mixer network of channels and features a lined array of paired injection and aspiration apertures. By combining the concepts of hydrodynamic flow confinements (HFCs) and "Christmas-tree" concentration gradient generation, the MMP can produce multiple concentration-varying flow dipoles, ranging from 0 to 100%, within an open microfluidic environment. This innovation overcomes previous limitations of MFPs, which only produced homogeneous bioreagents, by utilizing the pre-mixer to create distinct concentration of injected biochemicals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!