We have previously shown that the poly(A) polymerase (PAP) gene of Trypanosoma brucei is interrupted by an intervening sequence. It was postulated that removing this intron by cis-splicing requires a yet unidentified U1 small nuclear RNA (snRNA), which in other organisms engages in base-pair interactions across the 5' splice site during early spliceosome assembly. Here we present a characterization of a 75 nucleotide long candidate T. brucei U1 snRNA. Immunoprecipitation studies indicate that a trimethylguanosine cap structure is present at the 5' end and that the RNA is bound to core proteins common to spliceosomal ribonucleoprotein particles. The U1 snRNA has the potential for extensive intermolecular base pairing with the PAP 5' splice site. We used block replacement mutagenesis to identify sequences necessary for in vivo expression of U1 snRNA. We found that at least two cis-acting elements, tRNA-like A and B boxes, located in the 5'-flanking region are necessary for U1 snRNA synthesis; no internal sequences close to the transcription start site are essential, suggesting a promoter architecture distinct from other trypanosome U-snRNA genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0166-6851(00)00384-4 | DOI Listing |
Clin Microbiol Rev
January 2025
School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
SUMMARYPrior to 2019, when the orally available drug fexinidazole began its clinical use, the treatment of human African trypanosomiasis (HAT) was complex and unsatisfactory for many reasons. Two sub-species of the parasite are responsible for HAT, namely the rhodesiense form found in East and Southern Africa and the gambiense form found in Central and West Africa. Diseases caused by both forms manifest in two stages: stage 1 before and stage 2 after central nervous system involvement.
View Article and Find Full Text PDFMolecules
December 2024
Departamento de Bioquímica y Farmacología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento 17, 18016 Armilla, Spain.
G-quadruplexes (G4s) are non-canonical secondary structures that play a crucial role in the regulation of genetic expression. This study explores the interaction between G4s and a small family of oligostyrylbenzene (OSB) derivatives, characterized by tris(styryl)benzene and tetrastyrylbenzene backbones, functionalized with either trimethylammonium or 1-methylpyridinium groups. Initially identified as DNA ligands, these OSB derivatives have now been recognized as potent G4 binders, surpassing in binding affinity commercially available ligands such as pyridostatin and displaying good selectivity for G4s over duplex DNA.
View Article and Find Full Text PDFMol Biochem Parasitol
December 2024
University of Glasgow Centre for Parasitology, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom. Electronic address:
Eukaryotic chromosomes segregate faithfully prior to nuclear division to ensure genome stability. If segregation becomes defective, the chromosome copy number of the cell may alter leading to aneuploidy and/or polyploidy, both common hallmarks of cancers. In eukaryotes, aurora kinases regulate chromosome segregation during mitosis and meiosis, but their functions in the divergent, single-celled eukaryotic pathogen Trypanosoma brucei are less understood.
View Article and Find Full Text PDFTrop Med Int Health
December 2024
Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium.
Background: Rapid diagnostic tests for the serological detection of gambiense human African trypanosomiasis (gHAT) have been developed to overcome the limitations of the traditional screening method, CATT/T. b. gambiense.
View Article and Find Full Text PDFNat Commun
December 2024
Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
The eukaryotic nucleus exhibits a highly organized 3D genome architecture, with RNA transcription and processing confined to specific nuclear structures. While intra-chromosomal interactions, such as promoter-enhancer dynamics, are well-studied, the role of inter-chromosomal interactions remains poorly understood. Investigating these interactions in mammalian cells is challenging due to large genome sizes and the need for deep sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!