Vaccinia virus (VV) recombinants that contain the genes encoding the Venezuelan equine encephalitis virus (VEEV) structural gene region (C-E3-E2-6 K-E1) solidly protect mice against peripheral challenge with virulent VEEV, but provide only partial protection against airborne challenge. To improve upon these results we focussed on the principal antigens involved in protection. VV recombinants encoding the structural genes E3-E2-6 K-E1, E3-E2-6 K or 6 K-E1 were prepared and evaluated for their ability to protect Balb/c mice after a single dorsal scarification with 10(8) PFU against peripheral or airborne challenge with virulent VEEV. The antibody response was also examined. Our experiments provide new evidence that truncates of the VEEV structural region (E3-E2-6 K-E1, E3-E2-6 K), cloned and expressed in VV, protect against challenge with virulent virus. They also confirm the important role of E2 in protection. However, we were unable to improve upon previously reported levels of protection against airborne challenge. A substantial level of circulating antibodies and the presence of local IgA (not always induced by mucosal immunization) (Greenway et al., 1992) appear essential for protection against the airborne virus. Current VV-VEEV recombinants seem unable to elicit this level of immune response and further improvements are therefore required to increase the immunogenicity of VV-VEEV vaccines.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!